R 语言 用途 与优势

(1)R 语言主要用来 对 数据进行统计分析

(2)R语言可以针对数据 进行绘图

其高级功能如下

R语言饼图图表R语言条形图(柱状图)R语言箱线图R语言柱状图R语言线型图R语言散点图R语言均值,中位数和模式R语言线性回归R语言多元回归R语言逻辑回归R语言正态分布R语言二项分布R语言泊松回归R语言协方差分析R语言时间序列分析R语言非线性最小二乘R语言决策树R语言随机森林R语言生存分析R语言卡方检验

绘图

R编程语言在数字分析与机器学习领域已经成为一款重要的工具。随着机器逐步成为愈发核心的数据生成器,该语言的人气也必然会一路攀升。不过R语言当然也拥有着自己的优势与缺点,开发人员只有加以了解后才能充分发挥它的强大能力。

R语言的优势

正如Tiobe、PyPL以及Redmonk等编程语言人气排名所指出,R语言所受到的关注程度正在快速提升。作为一款诞生于上世纪九十年代的语言,R已经成为S统计编程语言的一类实现方式。已经拥有十八年R编程经验的高校教授兼Coursera在线平台培训师Roger Peng指出,“R语言已经成为统计领域最具人气的语言选项”。

“我之所以喜爱R语言,是因为它易于从计算机科学角度出发实现编程,”Peng表示。而R语言随时间推移正呈现出愈发迅猛的发展态势,并成为能够将不同数据集、工具乃至软件包结合在一起的胶水型语言,Peng解释道。

“R语言是创建可重复性及高质量分析的最佳途径。它拥有数据处理所必需的一切灵活性及强大要素,”在线编程教育机构Code School数据科学家Matt Adams指出。“我用R语言编写的大部分程序实际上都是在将各类脚本整理到项目当中。”

R语言拥有强大的软件包生态系统与图表优势

R语言的优势主要体现在其软件包生态系统上。“庞大的软件包生态系统无疑是R语言最为突出的优势之一——如果某项统计技术已经存在,那么几乎必然存在着一款R软件包与之对应,”Adams指出。

“其中内置有大量专门面向统计人员的实用功能,”Peng表示。R语言具备可扩展能力且拥有丰富的功能选项,帮助开发人员构建自己的工具及方法,从而顺利实现数据分析,他进一步解释称。“随着时间的推移,越来越多来自其它领域的用户也被吸引到了R身边来,”其中包括生物科学乃至人文学科等。

“人们能够在无需申请权限的前提下对其进行扩展。”事实上,Peng回忆称多年之前R的使用方式就已经给相关工作带来了巨大便利。“当R语言刚刚诞生之时,它最大的优势就是以自由软件的姿态出现。其源代码以及所有一切都可供我们直接查看。”

Adams也表示,R语言在图形及图表方面的一切能够都是“无与伦比”的。其dplyr与ggplot2软件包分别用于进行数据处理与绘图,且“能够非常直观地提升我的生活质量,”他感叹道。

在机器学习方面,R语言的优势则体现在与学术界的强大联动效应,Adams指出。“在这一领域的任何新型研究成果可能都会马上以R软件包的形式体现出来。因此从这个角度看,R语言始终站在技术发展的尖端位置,”他表示。“这种接入软件包还能够提供良好的途径,帮助我们利用相对统一的API在R语言环境下实现机器学习研究。”Peng进一步补充称,目前已经有众多主流机器学习算法以R语言作为实现手段。

R语言的缺点

R的短板在于安全性与内存管理

说了这么多优势,R语言当然也存在着一定不足。“内存管理、速度与效率可能是R语言面临的几大最为严峻的挑战,”Adams指出。“在这方面,人们仍然需要努力推动——而且也确实正在推动——其进展与完善。此外,从其它语言转投R怀抱的开发人员也会发现后者在某些设定上确实有些古怪。”

R语言的基本原理来自上世纪六十年代出现的各类编程语言,Peng解释道。“从这个意义上讲,R语言在设计思路上属于一项古老的技术成果。”这种语言的设计局限有时候会令大规模数据集处理工作遇到难题,他强调称。因为数据必须被保存在物理内存当中——但随着计算机内存容量的不断提升,这个问题已经在很大程度上得到了解决,Peng指出。

安全等相关功能并没有被内置在R语言当中,Peng指出。此外,R语言无法被嵌入到网络浏览器当中,Peng表示。“我们不能利用它开发Web类或者互联网类应用程序。”再有,我们基本上没办法利用R语言当作后端服务器执行计算任务,因为它在网络层面缺乏安全性保障,他表示。不过Amazon Web Services云平台上的虚拟容器等技术方案的出现已经在很大程度上解决了此类安全隐患,Peng补充道。

长久以来,R语言当中始终缺少充足的交互元素,他表示。但以JavaScript为代表的各类编程语言介入其中并填补了这项空白,Peng指出。

虽然我们仍然需要利用R语言处理分析任务,但最终结果的具体显示方式则可以由JavaScript等其它语言来完成,他总结道。

R语言并不单纯面向高端程序员

不过Adams与Peng都会R视为一种易于接受的语言。“我本人并没有计算机科学教育背景,而且从来没想过要当一名程序员。将编程基础知识纳入技能储备当然很不错,但这并不是上手R语言的必要前提,”Adams指出。

“我甚至并不认为R语言只适用于程序员。它非常适合那些面向数据并试图解决相关问题的用户——无论他们的实际编程能力如何,”他强调称。

时间: 2025-01-30 13:45:25

R 语言 用途 与优势的相关文章

《R语言游戏数据分析与挖掘》一2.1 开发环境准备和快速入门

2.1 开发环境准备和快速入门 2.1.1 R语言简介 R语言的前身是S语言,S语言是由AT &T Bell实验室的Rick Becker.John Chambers和Allan Wilks开发的一种用来进行数据探索.统计分析.作图的解释型语言.最初S语言的实现版本主要是S-PLUS.S-PLUS是一个商业软件,它基于S语言,并由MathSoft公司的统计科学部进一步完善.而R语言最初由来自新西兰大学的Ross Ihaka和Robert Gentleman开发(由于他们的名字都以R开头,所以该软

如何用R语言进行云计算

如今,几乎所有领域或业务活动正在通过SMAC进行数据转换.SMAC指的是社交(Socia).移动(Mobile).分析(Analytics)和云服务(Cloud).这个改变的影响已经涉及到包括组织.人员与产品在内的范围.在本文中,我们将通过使用云计算让你提高数据分析能力. 我们已经使用R语言和RStudio由浅入深地解释了云计算的相关概念(请参考大数据文章2015年9月21日发布的文章<如何在云计算平台使用R语言编程的快速入门指南>).此外,相较于传统的桌面.本地客户机/服务器构架而言,你还将

预测分析:R语言实现.

数据科学与工程技术丛书 预测分析:R语言实现 Mastering Predictive Analytics with R [希] 鲁伊·米格尔·福特(Rui Miguel Forte) 著 吴今朝 译 图书在版编目(CIP)数据 预测分析:R语言实现/(希)鲁伊·米格尔·福特(Rui Miguel Forte)著:吴今朝译. -北京:机械工业出版社,2016.10 (数据科学与工程技术丛书) 书名原文:Mastering Predictive Analytics with R ISBN 978-

机器学习与R语言(原书第2版)》一1.4 实践中的机器学习

本节书摘来自华章出版社<机器学习与R语言(原书第2版)>一书中的第1章,第1.4节,美] 布雷特·兰茨(Brett Lantz) 著,李洪成 许金炜 李舰 译更多章节内容可以访问"华章计算机"公众号查看. 1.4 实践中的机器学习 到目前为止,我们已经讲述了理论上机器学习是如何工作的.为了把机器学习应用到真实世界的任务中,我们将采用由5个步骤构成的过程.不管你手头是何种任务,任何机器学习算法都能由下面这些步骤来实施:1)数据收集:数据收集步骤包括收集算法用来生成可行动知识的

《R语言数据分析》——1.4 从数据库中导入数据

1.4 从数据库中导入数据 使用一个专用的数据库测试平台比根据需要从磁盘中导入文件效率要高很多,这是由数据库本身特性决定的: 对大数据表的访问速度更快 在数据导入R前,提供了更快更有效的数据聚集和筛选方法 相比电子表格以及R对象实现的传统矩阵模型,能够提供更加结构化的关系 数据模型来存储数据 提供对数据的连接及合并操作 在同一时间支持对多个客户端的并发远程访问 提供了安全和有限的访问 提供可扩展及可配置的数据存储后台 DBI包提供了数据库操作的接口,可以作为R和不同关系数据管理系统(Relati

Keras R语言接口正式发布,同时公开20个完整示例

关于keras的介绍 Keras是一个高层神经网络API,为支持快速实验而生,目前主要功能如下: 支持相同的代码无缝跑在CPU或GPU上 对用户友好,易于快速prototype深度学习模型 支持计算机视觉中的卷积网络.序列处理中的循环网络,也支持两种网络的任意组合 支持任意网络架构:多段输入或多段输出模型.层共享.模型共享等.这意味着Keras 本质上适合用于构建任意深度学习模型(从记忆网络到神经图灵机) 兼容多种运行后端,例如TensorFlow.CNTK和 Theano 如果你已经很熟悉Ke

R语言数据挖掘

数据分析与决策技术丛书 R语言数据挖掘 Learning Data Mining with R [哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel) 著 李洪成 许金炜 段力辉 译 图书在版编目(CIP)数据 R语言数据挖掘 / (哈)贝特·麦克哈贝尔(Bater Makhabel)著:李洪成,许金炜,段力辉译. -北京:机械工业出版社,2016.9 (数据分析与决策技术丛书) 书名原文:Learning Data Mining with R ISBN 978-7-111-54769-

R(1)Mac OS 下安装R语言开发环境

本文原文连接: http://blog.csdn.net/freewebsys/article/details/45825267 转载请注明出处! 1,关于R 参考百度: http://baike.baidu.com/view/942569.htm R是一个免费的自由软件,它有UNIX.LINUX.MacOS和WINDOWS版本,都是可以免费下载和使用的.在那儿可以下载到R的安装程序.各种外挂程序和文档.在R的安装程序中只包含了8个基础模块,其他外在模块可以通过CRAN获得. R的原代码可自由下

《R的极客理想——高级开发篇 A》一一1.1 R语言知识体系概览

1.1 R语言知识体系概览 问题 如何高效地学习R语言? 引言 最近遇到很多想转行做数据分析的程序员,他们刚开始学习R语言.很多人以为有了其他语言的编程背景,学习R语言就是一件很简单的事情,因而一味地追求速度,但不求甚解.有人说2周就能掌握R语言,但其实掌握的仅仅是R语言的语法,只能算是入门. R语言的知识体系并非语法这么简单,如果都不了解R的全貌,何谈学好R语言呢?本节将介绍R语言的知识体系结构,并告诉读者如何才能高效地学习R语言.1.1.1 R语言的知识体系结构 R语言是一门统计语言,主要用