用条件变量来解决生产者消费者问题

在上一篇文章中,我使用了匿名信号量

什么是条件变量?
我们可以设想一个场景:线程A需要某个条件成立才能继续执行,否则一直等待下去,而线程B执行过程中使线程的执行条件成立,并且唤醒A。
举个例子,在生产者消费者模型中,消费者如果看到缓冲区为空时,就等待,而生产者往缓冲区添加完数据后,唤醒消费者。
其中这个场景中,可以POSIX的条件变量来实现。
以下是条件变量所需要的函数

pthread_cond_init
pthread_cond_destroy
pthread_cond_wait
pthread_cond_signal
pthread_cond_broadcast

这里大家就百度怎么用,或者在Linux中用man 3 pthread_cond_***的方法也行。
其中重点讲一下的是 pthread_cond_wait这个函数。
条件变量是要和互斥量配合使用的,而pthread_cond_wait的搭配互斥量后是执行者三步操作。

第一,条件不成立时,释放互斥量(将互斥量解锁)。
第二,阻塞自己,让别的线程开始执行。
第三,当被其他的线程唤醒时,重新获得互斥量(重新将互斥量加锁),并执行后续代码。

掌握了这个之后,就来说下条件变量的使用规范。
第一,等待条件代码

pthread_mutex_lock(&mutex);
while (条件为假)
    pthread_cond_wait(cond, mutex);
修改条件;
pthread_mutex_unlock(&mutex);

第二,修改条件代码

pthread_mutex_lock(&mutex);
设置条件为真
pthread_cond_signal(cond);
pthread_mutex_unlock(&mutex);

在这里的一个难点是,第一段条件等待代码为什么不用if而用while呢?在man 3 pthread_cond_wait 之后发现这样一段话

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal handler the thread resumes waiting for the condition variable as if it was not interrupted, or it shall return zero due to spurious wakeup.

也就是说,唤醒条件的信号,可以唤醒多个线程,但是只能允许一个信号访问,也就是说,因此等待线程需要不断的用while轮询一直到达到条件了才行。

好了,讲了这么多我们用它来做个生产者消费者实例吧。

#include <unistd.h>
#include <sys/types.h>
#include <pthread.h>
#include <semaphore.h>

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>

#define ERR_EXIT(m) \
        do \
        { \
                perror(m); \
                exit(EXIT_FAILURE); \
        } while(0)

#define CONSUMERS_COUNT 2
#define PRODUCERS_COUNT 1

pthread_mutex_t g_mutex;
pthread_cond_t g_cond;

pthread_t g_thread[CONSUMERS_COUNT + PRODUCERS_COUNT];

int nready = 0;

void *consume(void *arg)
{
    int num = (int)arg;
    while (1)
    {
        pthread_mutex_lock(&g_mutex);
        while (nready == 0)
        {
            printf("%d begin wait a condtion ...\n", num);
            pthread_cond_wait(&g_cond, &g_mutex);
        }

        printf("%d end wait a condtion ...\n", num);
        printf("%d begin consume product ...\n", num);
        --nready;
        printf("%d end consume product ...\n", num);
        pthread_mutex_unlock(&g_mutex);
        sleep(1);
    }
    return NULL;
}

void *produce(void *arg)
{
    int num = (int)arg;
    while (1)
    {
        pthread_mutex_lock(&g_mutex);
        printf("%d begin produce product ...\n", num);
        ++nready;
        printf("%d end produce product ...\n", num);
        pthread_cond_signal(&g_cond);
        printf("%d signal ...\n", num);
        pthread_mutex_unlock(&g_mutex);
        sleep(1);
    }
    return NULL;
}

int main(void)
{
    int i;

    pthread_mutex_init(&g_mutex, NULL);
    pthread_cond_init(&g_cond, NULL);

    for (i = 0; i < CONSUMERS_COUNT; i++)
        pthread_create(&g_thread[i], NULL, consume, (void *)i);

    sleep(1);

    for (i = 0; i < PRODUCERS_COUNT; i++)
        pthread_create(&g_thread[CONSUMERS_COUNT + i], NULL, produce, (void *)i);

    for (i = 0; i < CONSUMERS_COUNT + PRODUCERS_COUNT; i++)
        pthread_join(g_thread[i], NULL);

    pthread_mutex_destroy(&g_mutex);
    pthread_cond_destroy(&g_cond);

    return 0;
}

最后,下图为代码执行结果。

时间: 2024-10-21 17:50:09

用条件变量来解决生产者消费者问题的相关文章

java多线程解决生产者消费者问题_java

本文实例讲述了java多线程解决生产者消费者问题的方法.分享给大家供大家参考.具体分析如下: 题目是这样的: 采用Java 多线程技术,设计实现一个符合生产者和消费者问题的程序.对一个对象(枪膛)进行操作,其最大容量是12颗子弹.生产者线程是一个压入线程,它不断向枪膛中压入子弹:消费者线程是一个射出线程,它不断从枪膛中射出子弹. 要求: (1)给出分析过程说明. (2)程序输出,要模拟体现对枪膛的压入和射出操作: (2)设计程序时应考虑到两个线程的同步问题. 这个和著名的生产者消费者问题几乎是一

java 生产者消费者问题 并发问题的解决(转)

引言 生产者和消费者问题是线程模型中的经典问题:生产者和消费者在同一时间段内共用同一个存储空间,如下图所示,生产者向空间里存放数据,而消费者取用数据,如果不加以协调可能会出现以下情况: 生产者消费者图 存储空间已满,而生产者占用着它,消费者等着生产者让出空间从而去除产品,生产者等着消费者消费产品,从而向空间中添加产品.互相等待,从而发生死锁. 生产者消费者问题是研究多线程程序时绕不开的经典问题之一,它描述是有一块缓冲区作为仓库,生产者可以将产品放入仓库,消费者则可以从仓库中取走产品.解决生产者/

生产者消费者问题-转自维基百科

生产者消费者问题(英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是一个多线程同步问题的经典案例.该问题描述了两个共享固定大小缓冲区的线程--即所谓的"生产者"和"消费者"--在实际运行时会发生的问题.生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程.与此同时,消费者也在缓冲区消耗这些数据.该问题的关键就是要保证生产者不会在缓冲区满时加入数据,消费者也不会在缓冲区中空时

java 生产者消费者问题

引言 生产者和消费者问题是线程模型中的经典问题:生产者和消费者在同一时间段内共用同一个存储空间,如下图所示,生产者向空间里存放数据,而消费者取用数据,如果不加以协调可能会出现以下情况: 生产者消费者图 存储空间已满,而生产者占用着它,消费者等着生产者让出空间从而去除产品,生产者等着消费者消费产品,从而向空间中添加产品.互相等待,从而发生死锁. 生产者消费者问题是研究多线程程序时绕不开的经典问题之一,它描述是有一块缓冲区作为仓库,生产者可以将产品放入仓库,消费者则可以从仓库中取走产品.解决生产者/

如何在 Java 中正确使用 wait, notify 和 notifyAll – 以生产者消费者模型为例

wait, notify 和 notifyAll,这些在多线程中被经常用到的保留关键字,在实际开发的时候很多时候却并没有被大家重视.本文对这些关键字的使用进行了描述. 在 Java 中可以用 wait.notify 和 notifyAll 来实现线程间的通信..举个例子,如果你的Java程序中有两个线程--即生产者和消费者,那么生产者可以通知消费者,让消费者开始消耗数据,因为队列缓冲区中有内容待消费(不为空).相应的,消费者可以通知生产者可以开始生成更多的数据,因为当它消耗掉某些数据后缓冲区不再

并发编程(二):分析Boost对 互斥量和条件变量的封装及实现生产者消费者问题

请阅读上篇文章<并发编程实战: POSIX 使用互斥量和条件变量实现生产者/消费者问题>.当然不阅读亦不影响本篇文章的阅读. Boost的互斥量,条件变量做了很好的封装,因此比"原生的"POSIX mutex,condition variables好用.然后我们会通过分析boost相关源码看一下boost linux是如何对pthread_mutex_t和pthread_cond_t进行的封装. 首先看一下condition_variable_any的具体实现,代码路径:/

并发编程(一): POSIX 使用互斥量和条件变量实现生产者/消费者问题

    boost的mutex,condition_variable非常好用.但是在Linux上,boost实际上做的是对pthread_mutex_t和pthread_cond_t的一系列的封装.因此通过对原生态的POSIX 的mutex,cond的生成者,消费者的实现,我们可以再次体会boost带给我们的便利. 1. 什么是互斥量        互斥量从本质上说是一把锁,在访问共享资源前对互斥量进行加锁,在访问完成后释放互斥量上的锁.对互斥量进行加锁以后,任何其他试图再次对互斥量加锁的线程将

二、(LINUX 线程同步) 互斥量、条件变量以及生产者消费者问题

原创转载请注明出处: 接上一篇: 一.(LINUX 线程同步) 引入  http://blog.itpub.net/7728585/viewspace-2137980/ 在线程同步中我们经常会使用到mutex互斥量,其作用用于保护一块临界区,避免多线程并发操作对这片临界区带来的数据混乱, POSIX的互斥量是一种建议锁,因为如果不使用互斥量也可以访问共享数据,但是可能是不安全的. 其原语包含: pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; 

练习生产者与消费者-PYTHON多线程中的条件变量同步-Queue

以前练习过,但好久不用,手生,概念也生了, 重温一下.. URL: http://www.cnblogs.com/holbrook/tag/%E5%A4%9A%E7%BA%BF%E7%A8%8B/ ~~~~~~~ 互斥锁是最简单的线程同步机制,Python提供的Condition对象提供了对复杂线程同步问题的支持.Condition被称为条件变量,除了提供与Lock类似的acquire和release方法外,还提供了wait和notify方法.线程首先acquire一个条件变量,然后判断一些条件