Java网络编程之TCP粘包拆包

TCP是个“流”协议,所谓流,就是没有界限的一串数据。大家可以想象河里的流水,他们是连成一片的,其间并没有分界线。TCP底层并不了解上层业务数据的具体含义,他会根据TCP缓冲区的实际情况进行包的划分,所以在业务上认为,一个完整的包可能会被TCP拆分成多个包进行发送,也有可能把多个小的包封装成一个大的数据包发送。这就是TCP所谓的拆包和粘包的问题。

一、TCP粘包/拆包问题说明

我们可以通过图解对TCP粘包和拆包问题进行说明,粘包问题如图。

假设客户端分别发送了两个数据包D1和D2给服务端,由于服务端一次读取到的字节数是不确定的,故可能存在以下4中情况。

  • 服务端分两次读取到了两个独立的数据包,分别是D1和D2,没有粘包和拆包。
  • 服务端一次接收到了两个数据包,D1和D2粘在一起,被称为TCP粘包
  • 服务端分两次读取到了两个数据包,第一次读取到了完整的D1包和D2包的部分内容,第二次读取到了D2包的剩余内容,这被称为TCP拆包。
  • 服务端分两次读取到了两个数据包,第一次读取到了D1包的部分内容D1_1,第二次读取到了D1包的剩余内容D1_2和D2包的整包。

如果此时服务端TCP接收滑窗非常小,而数据包D1和D2比较大,很有可能会发生第五种可能,即服务端分多次才能将D1和D2包接收完全,期间发生多次拆包。

二、TCP粘包/拆包发生的原因

问题产生的原因有三个,分别如下。

  • 应用程序write写入的字节大小大于套接口发送缓冲区大小。
  • 进行MSS大小的TCP分段。
  • 以太网帧的payload大于MTU进行IP分片。

三、粘包问题的解决策略

由于底层的TCP无法理解上层的业务数据,所以在底层是无法保证数据包不被拆分和重组的,这个问题只能通过上层的应用协议栈设计来解决,根据业界的主流协议的解决方案,可以归纳如下。

  • 消息定长,例如每个报文的大小为固定长度200字节,如果不够,空位补空格
  • 在包尾增加回车换行符进行分割,例如FTP协议
  • 将消息分为消息头和消息体,消息头中包含表示消息总长度(或者消息体长度)的字段,通常涉及思路为消息头的第一个字段使用int32来表示消息的总长度
  • 更复杂的应用层协议。
时间: 2024-10-01 04:12:57

Java网络编程之TCP粘包拆包的相关文章

JAVA网络编程之Socket

在前面博客中使用到的HttpsURLConnection实际上是基于HTTP协议完成获取网络资源的,而HTTP协议又是基于TCP/IP协议的,这一片博客将介绍在java中如何使用TCP/IP协议进行服务端与客户端之间的通信. TCP/IP,Transmission Control Protocol/Internet Protocol的简写,中译名为传输控制协议/因特网互联协议,又名网络通讯协议,是Internet最基本的协议.Internet国际互联网络的基础,由网络层的IP协议和传输层的TCP

linux网络编程之TCP/IP基础(一) TCP/IP协议栈与数据包封装

一.ISO/OSI参考模型 OSI(open system interconnection)开放系统互联模型是由ISO(International Organization for Standardization)国际标准化组织定义的网络分层模型,共七层,如下图. 物理层(Physical Layer):物 理层定义了所有电子及物理设备的规范,为上层的传输提供了一个物理介质,本层中数据传输的单位为比特(bit).属于 本层定义的规范有EIA/TIA RS-232.EIA/TIA RS-449.V

Java中网络编程之TCP协议

一.TCP的基本概念 TCP是专门设计用于在不可靠的英特网上提供可靠的.端到端的字节流通信的协议,是一个面向连接的协议,TCP连接是字节流而非报文流.UDP和TCP各有65536个端口号互不影响.   二.单线程服务端 以下代码只能实现服务端和客户端的同步对话.服务端处理完一个客户端请求,才会处理另一个客户端请求.服务器端的输出效果是Client1阻塞20秒,Client2不会执行.必须等Client1阻塞结束之后,Client2才会执行.该例子可用来学习TCP的基本语法. /** * TCP客

JAVA网络编程之UDP

上一篇博客中使用的Socket是基于TCP协议的,这一篇为大家简单介绍一下UDP协议. UDP 是User Datagram Protocol的简称, 中文名是用户数据报协议,是OSI(Open System Interconnection,开放式系统互联) 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务,IETF RFC 768是UDP的正式规范. UDP协议全称是用户数据报协议[1] ,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议.在OSI模型中,在第

linux网络编程之TCP/IP基础(五) 分析一帧基于UDP的TFTP协议帧

下图是UDP的段格式: 相比TCP段格式,UDP要简单得多,也没啥好 说的,需要注意的是UDP数据长度指payload加上首部的长度. 下面分析一帧基于UDP的TFTP协议帧: 以太网 首部 0000: 00 05 5d 67 d0 b1 00 05 5d 61 58 a8 08 00 IP首部 0000: 45 00 0010: 00 53 93 25 00 00 80 11 25 ec c0 a8 00 37 c0 a8 0020: 00 01 UDP首部 0020: 05 d4 00 45

Visual C#网络编程之TCP

visual|编程|网络 注:不是原创! 前一篇<Visual C#.Net网络程序开发之Socket>中说到:支持Http.Tcp和Udp的类组成了TCP/IP三层模型(请求响应层.应用协议层.传输层)的中间层-应用协议层,该层的类比位于最底层的Socket类提供了更高层次的抽象,它们封装 TCP 和 UDP 套接字的创建,不需要处理连接的细节,这使得我们在编写套接字级别的协议时,可以更多地尝试使用 TCPClient . UDPClient和TcpListener,而不是直接向 Socke

扯谈网络编程之Tcp SYN flood洪水攻击

简介 TCP协议要经过三次握手才能建立连接: (from wiki) 于是出现了对于握手过程进行的攻击.攻击者发送大量的SYN包,服务器回应(SYN+ACK)包,但是攻击者不回应ACK包,这样的话,服务器不知道(SYN+ACK)是否发送成功,默认情况下会重试5次(tcp_syn_retries).这样的话,对于服务器的内存,带宽都有很大的消耗.攻击者如果处于公网,可以伪造IP的话,对于服务器就很难根据IP来判断攻击者,给防护带来很大的困难. 攻与防 攻击者角度 从攻击者的角度来看,有两个地方可以

C# 网络编程之Tcp实现客户端和服务器聊天

      最近使用Socket网络套接字编程中,在同步与异步通讯中客户端与服务器总是无法响应,但在学习Tcp协议编程中完成了通讯聊天功能,下面简单讲讲我最近学到的及Tcp聊天的源代码及详细注释.       Tcp协议是一个传输层的协议,在Tcp协议编程中它通常使用的是3个类,其命名空间为System.Net.Sockets:       1.TcpListener:基于TCP协议服务端开发,监听IP地址和端口号是否连接.      该类常用的方法有Start()开始监听.AcceptSock

linux网络编程之TCP/IP基础(三) IP数据报格式和IP地址路由

一.IP数据报格式 IP数据报格式如下: 版本 IP协议版本号,长度为4位,IPv4此 字段值为4,IPv6此字段值为6 首部长度 以32位的字为单位,该字段长度为4位,最小值为5,即不带任何选项的IP 首部20个字节:最大值为15,所以首部长度最大为60个字节 服务类型(TOS) 长度为8位.此字段包含3位的优先 权(现已忽略),4位的服务类型子字段和1位的保留位(必须置0).4位的服务类型分别为最小延迟(D).最大吞吐量(T ).最高可靠性(R).最小费用(F),如下图. 总长度 该字段长度