针对Linux内存管理知识学习总结

现在的服务器大部分都是运行在Linux上面的,所以,作为一个程序员有必要简单地了解一下系统是如何运行的。对于内存部分需要知道:

  • 地址映射
  • 内存管理的方式
  • 缺页异常

先来看一些基本的知识,在进程看来,内存分为内核态和用户态两部分,经典比例如下:

从用户态到内核态一般通过系统调用、中断来实现。用户态的内存被划分为不同的区域用于不同的目的:

当然内核态也不会无差别地使用,所以,其划分如下:

下面来仔细看这些内存是如何管理的。

地址

在Linux内部的地址的映射过程为逻辑地址–>线性地址–>物理地址,物理地址最简单:地址总线中传输的数字信号,而线性地址和逻辑地址所表示的则是一种转换规则,线性地址规则如下:

这部分由MMU完成,其中涉及到主要的寄存器有CR0、CR3。机器指令中出现的是逻辑地址,逻辑地址规则如下:

在Linux中的逻辑地址等于线性地址,也就是说Inter为了兼容把事情搞得很复杂,Linux简化顺便偷个懒。

内存管理的方式

在系统boot的时候会去探测内存的大小和情况,在建立复杂的结构之前,需要用一个简单的方式来管理这些内存,这就是bootmem,简单来说就是位图,不过其中也有一些优化的思路。

bootmem再怎么优化,效率都不高,在要分配内存的时候毕竟是要去遍历,buddy系统刚好能解决这个问题:在内部保存一些2的幂次大小的空闲内存片段,如果要分配3page,去4page的列表里面取一个,分配3个之后将剩下的1个放回去,内存释放的过程刚好是一个逆过程。用一个图来表示:

可以看到0、4、5、6、7都是正在使用的,那么,1、2被释放的时候,他们会合并吗?


  1. static inline unsigned long 
  2. __find_buddy_index(unsigned long page_idx, unsigned int order) 
  3.     return page_idx ^ (1 << order);// 更新最高位,0~1互换 

从上面这段代码中可以看到,0、1是buddy,2、3是buddy,虽然1、2相邻,但他们不是。内存碎片是系统运行的大敌,伙伴系统机制可以在一定程度上防止碎片~~另外,我们可以通过cat /proc/buddyinfo获取到各order中的空闲的页面数。

伙伴系统每次分配内存都是以页(4KB)为单位的,但系统运行的时候使用的绝大部分的数据结构都是很小的,为一个小对象分配4KB显然是不划算了。Linux中使用slab来解决小对象的分配:

在运行时,slab向buddy“批发”一些内存,加工切块以后“散卖”出去。随着大规模多处理器系统和NUMA系统的广泛应用,slab终于暴露出不足:

  • 复杂的队列管理
  • 管理数据和队列存储开销较大
  • 长时间运行partial队列可能会非常长
  • 对NUMA支持非常复杂

为了解决这些高手们开发了slub:改造page结构来削减slab管理结构的开销、每个CPU都有一个本地活动的slab(kmem_cache_cpu)等。对于小型的嵌入式系统存在一个slab模拟层slob,在这种系统中它更有优势。

小内存的问题算是解决了,但还有一个大内存的问题:用伙伴系统分配10 x 4KB的数据时,会去16 x 4KB的空闲列表里面去找(这样得到的物理内存是连续的),但很有可能系统里面有内存,但是伙伴系统分配不出来,因为他们被分割成小的片段。那么,vmalloc就是要用这些碎片来拼凑出一个大内存,相当于收集一些“边角料”,组装成一个成品后“出售”:

之前的内存都是直接映射的,第一次感觉到页式管理的存在:D 另外对于高端内存,提供了kmap方法为page分配一个线性地址。

进程由不同长度的段组成:代码段、动态库的代码、全局变量和动态产生数据的堆、栈等,在Linux中为每个进程管理了一套虚拟地址空间

在我们写代码malloc完以后,并没有马上占用那么大的物理内存,而仅仅是维护上面的虚拟地址空间而已,只有在真正需要的时候才分配物理内存,这就是COW(COPY-ON-WRITE:写时复制)技术,而物理分配的过程就是最复杂的缺页异常处理环节了,下面来看!

缺页异常

在实际需要某个虚拟内存区域的数据之前,和物理内存之间的映射关系不会建立。如果进程访问的虚拟地址空间部分尚未与页帧关联,处理器自动引发一个缺页异常。在内核处理缺页异常时可以拿到的信息如下:

  • cr2:访问到线性地址
  • err_code:异常发生时由控制单元压入栈中,表示发生异常的原因
  • regs:发生异常时寄存器的值

处理的流程如下:

发生缺页异常的时候,可能因为不常使用而被swap到磁盘上了,swap相关的命令如下:


命令


作用


swapon


开启swap


swapoff


关闭swap


/proc/sys/vm/swappiness


分值越大越积极使用swap,可以修改/etc/sysctl.conf中添加vm.swappiness=xx来修改

如果内存是mmap映射到内存中的,那么在读、写对应内存的时候也会产生缺页异常。

来源:51CTO

时间: 2024-10-30 18:21:22

针对Linux内存管理知识学习总结的相关文章

Linux内存管理初探

作者:王智通   一.前言 二.简单的内存管理器示例 三.GNU malloc算法 四.Kernel Buddy伙伴系统算法 五.Kernel Slab/Slub高速缓存算法   一.前言 这次课程最初的题目叫<linux内存管理>, 可是写着写着就感觉这个题目起的太大了, VM(virtul memory)是操作系统中最抽象最复杂的子系统, 想通过一次课把它全部讲清楚有点不现实. 所以我把这次课程的名字改成内存管理初探,先讲讲linux内存的分配算法, 后续课程中在陆续涉及内存映射与回收机制

Linux内存管理【转】

转自:http://www.cnblogs.com/wuchanming/p/4360264.html 转载:http://www.kerneltravel.net/journal/v/mem.htm Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理

Linux内存管理 【转】

转自:http://blog.chinaunix.net/uid-25909619-id-4491368.html Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理. 前言 内存管理一向是所有操作系统书

Linux内存管理

转载:http://www.kerneltravel.net/journal/v/mem.htm Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理. 前言 内存管理一向是所有操作系统书籍不惜笔墨重点讨论

深入理解Linux内存管理机制(一)

深入理解Linux内存管理机制(一)通过本文,您即可以: 1. 存储器硬件结构: 2.分段以及对应的组织方式: 3.分页以及对应的组织方式. 注1:本文以Linux内核2.6.32.59本版为例,其对应的代码可以在http://www.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.32/linux-2.6.32.59.tar.bz2找到. 注2:本文所有的英文专有名词都是我随便翻译的,请对照英文原文进行理解. 注3:推荐使用Source Insig

Linux内核分析(三)----初识linux内存管理子系统

原文:Linux内核分析(三)----初识linux内存管理子系统 Linux内核分析(三) 昨天我们对内核模块进行了简单的分析,今天为了让我们今后的分析没有太多障碍,我们今天先简单的分析一下linux的内存管理子系统,linux的内存管理子系统相当的庞大,所以我们今天只是初识,只要对其进行简单的了解就好了,不会去追究代码,但是在后面我们还会对内存管理子系统进行一次深度的分析. 在分析今天的内容之前,我们先来看出自http://bbs.chinaunix.net/thread-2018659-2

Linux内存管理原理【转】

转自:http://www.cnblogs.com/zhaoyl/p/3695517.html 本文以32位机器为准,串讲一些内存管理的知识点.   1. 虚拟地址.物理地址.逻辑地址.线性地址 虚拟地址又叫线性地址.linux没有采用分段机制,所以逻辑地址和虚拟地址(线性地址)(在用户态,内核态逻辑地址专指下文说的线性偏移前的地址)是一个概念.物理地址自不必提.内核的虚拟地址和物理地址,大部分只差一个线性偏移量.用户空间的虚拟地址和物理地址则采用了多级页表进行映射,但仍称之为线性地址. 2.

linux内存管理-内核用户空间 【转】

转自:http://blog.chinaunix.net/uid-25909619-id-4491362.html 1,linux内存管理中几个重要的结构体和数组 page unsigned long flags 一组标志,也对页框所在的管理区进行编号 atomic_t _count 该页被引用的次数 atomic_t _mapcount 页框中页表项数目,如果没有则为-1 struct list_head lru 管理page忙碌/空闲链表(inactive_list/active_list)

linux内存管理---虚拟地址、逻辑地址、线性地址、物理地址的区别(一)

  分析linux内存管理机制,离不了上述几个概念,在介绍上述几个概念之前,先从<深入理解linux内核>这本书中摘抄几段关于上述名词的解释: 一.<深入理解linux内核>的解释 逻辑地址(Logical Address)         包含在机器语言指令中用来指定一个操作数或一条指令的地址(有点深奥).这种寻址方式在80x86著名的分段结构中表现得尤为具体,它促使windows程序员把程序分成若干段.每个逻辑地址都由一个段和偏移量组成,偏移量指明了从段开始的地方到实际地址之间