spark-Spark哪些分布式计算可以脱离HDFS跑?

问题描述

Spark哪些分布式计算可以脱离HDFS跑?

standalone模式可以吗?脱离Hadoop圈跑起来,并从内存或本地生成数据
怎么操作呢?

解决方案

可以脱离HDFS计算Pi

时间: 2024-10-13 21:04:47

spark-Spark哪些分布式计算可以脱离HDFS跑?的相关文章

让你的.NET程序脱离Framework跑起来

程序 Mono虽好,可是他毕竟不是Microsoft .NET Framework,至少它的WinForms是采用了java里swing同样的方法,所以无论用户的主题多么漂亮,WinForm都是传统的Windows界面,作为桌面应用时就显得格格不入. 安装 但.NET核心文件并不多(相对而言,相比mono你会发现他很庞大) 我给出我的报告文件,看这个要比看那2mb的log轻松得多. /////////////////////// files: c:\windows\system32\mscore

Spark-基础-Spark及其生态圈简介

1.简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架.Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处,Spark以其先进的设计理念,迅速成为社区的热门项目,围绕着Spark推出了Spark SQL.Spark Streaming.MLLib和GraphX等组件,也就是BDAS(伯克利数据分析栈),这些组件逐渐形

大数据流式计算三种框架:Storm,Spark和Samza

许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行.一个拓扑中包括spout和bolt两种角色,其中spout发送消息,负责将数据流以tuple元组的形式发送出去:而bolt

《Spark大数据分析:核心概念、技术及实践》大数据技术一览

本节书摘来自华章出版社<Spark大数据分析:核心概念.技术及实践>一书中的第1章,第1节,作者穆罕默德·古勒(Mohammed Guller)更多章节内容可以访问"华章计算机"公众号查看. 大数据技术一览 我们正处在大数据时代.数据不仅是任何组织的命脉,而且在指数级增长.今天所产生的数据比过去几年所产生的数据大好几个数量级.挑战在于如何从数据中获取商业价值.这就是大数据相关技术想要解决的问题.因此,大数据已成为过去几年最热门的技术趋势之一.一些非常活跃的开源项目都与大数据

Hadoop+Spark+MongoDB+MySQL+C#大数据开发项目最佳实践

随着IT技术的飞速发展,各行各业都已在广泛尝试使用大数据技术提供更稳健和优质的服务.目前,医疗IT系统收集了大量极具价值的数据,但这些历史医疗数据并没有发挥出其应有的价值.为此,本文拟利用医院现有的历史数据,挖掘出有价值的基于统计学的医学规则.知识,并基于这些信息构建专业的临床知识库,提供诊断.处方.用药推荐功能,基于强大的关联推荐能力,极大地提高医疗服务质量,减轻医疗人员的工作强度.   二.Hadoop&Spark  目前大数据处理领域的框架有很多.   从计算的角度上看,主要有MapRed

和封神一起“深挖”Spark

关于分享者 曹龙,花名封神,专注在大数据领域,6年分布式引擎研发经验.先后研发上万台Hadoop.ODPS集群.先后负责阿里YARN.Spark及自主研发内存计算引擎.目前为广大公共云用户提供专业的Hadoop服务,即:E-mapreduce产品. 演讲内容架构 数据处理技术介绍 Spark 介绍 Spark Plus Spark 应用场景 Spark 在云上 Spark 常见的问题 E-MapReduce大数据平台 演讲主要内容 大数据通常自上而下分为大数据产品.数据治理/作业生命周期.作业管

Spark实践的阶段性总结

写这篇小总结是因为前段时间是自己业余时间对Spark相关进行了些探索,接下来可能有别的同事一起加入,且会去借用一些别的服务器资源,希望可以借此理下思路. 实践Spark的原因 在之前Spark简介及安装的文章前面,介绍了Spark在大数据处理领域的一个定位,以及AMP实验室构建的生态圈,总之我定义Spark为一个值得研究的东西,包括他的实现语言Scala,底层的资源管理Mesos/YARN.对于Spark的实践,我理了下思路,大致有以下几个阶段: 1.看paper,官网等网上的资源介绍,了解熟悉

用Apache Spark进行大数据处理—入门篇

文章讲的是用Apache Spark进行大数据处理-入门篇,Apache Spark 是一个围绕速度.易用性和复杂分析构建的大数据处理框架.最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一. 与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势. 首先,Spark为我们提供了一个全面.统一的框架用于管理各种有着不同性质(文本数据.图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求. Sp

《循序渐进学Spark 》Spark架构与集群环境

Spark架构与集群环境 本章首先介绍Spark大数据处理框架的基本概念,然后介绍Spark生态系统的主要组成部分,包括Spark SQL.Spark Streaming.MLlib和GraphX,接着简要描述了Spark的架构,便于读者认识和把握,最后描述了Spark集群环境搭建及Spark开发环境的构建方法. 1.1 Spark概述与架构 随着互联网规模的爆发式增长,不断增加的数据量要求应用程序能够延伸到更大的集群中去计算.与单台机器计算不同,集群计算引发了几个关键问题,如集群计算资源的共享