operator new在C++中的各种写法总结_C 语言

乍一看,在C++中动态分配内存很简单:new是分配,delete是释放,就这么简单。然而,这篇文章讲得要复杂一点,并且要考虑到自定义层次。这也许对简单的程序并不重要,但对你在代码中控制内存却是十分必要的,是否能写一个自定义的分配器,某种高级内存管理表或一个特定的垃圾回收机制。

这篇文章并不是一个综合的手册,而是一个C++中各种内存分配方法的概述。它面向已经很熟悉C++语言的读者。

原生operator new

我们先从原生operator new开始。考虑如下代码,它用来分配5个int型的空间并返回指向他们的指针[1]:

int* v = static_cast<int*>(::operator new(5 * sizeof(*v)));

当像如上的调用,operator new扮演原生的内存分配角色,类似malloc。上面等价于:

int* v = static_cast<int*>(malloc(5 * sizeof(*v)));

释放用operator new分配的内存用operator delete:

::operator delete(v);

你愿意永远用原生new和delete函数吗?是,只在极少数不用,我在下面的文章中会论证的。为什么用它们而不用原来的可信的malloc和free呢?一个很充分的原因就是你想保持代码在C++领域的完整性。混合使用new和free(或malloc和delete)是很不可取的(big NO NO)。用new和delete的另一个原因是你可以重载(overload)或重写(override)这些函数,只要你需要。下面是个例子:

复制代码 代码如下:

void* operator new(size_t sz) throw (std::bad_alloc)
{
    cerr << "allocating " << sz << " bytesn";
    void* mem = malloc(sz);
    if (mem)
        return mem;
    else
        throw std::bad_alloc();
}

void operator delete(void* ptr) throw()
{
    cerr << "deallocating at " << ptr << endl;
    free(ptr);
}

通常,注意到new被用来给内置类型,不包含用户自定义new函数的类的对象,和任意类型的数组分配空间,使用的都是全局的运算符new。当new被用来为已经被重定义new的类实例化时,用的就是那个类的new函数。

下面来看下带new函数的类。

特定类的operator new
大家有时很好奇"operator new"和"new operator"的区别。前者可以是一个重载的operator new,全局的或者特定类或者原生的operator new。后者是你经常用来分配内存的C++内置的new operator,就像:

Car* mycar = new Car;

C++支持操作符重载,并且我们可以重载的其中一个就是new。

下面是个例子:

复制代码 代码如下:

class Base
{
public:
    void* operator new(size_t sz)
    {
        cerr << "new " << sz << " bytesn";
        return ::operator new(sz);
    }

    void operator delete(void* p)
    {
        cerr << "deleten";
        ::operator delete(p);
    }
private:
    int m_data;
};

class Derived : public Base
{
private:
    int m_derived_data;
    vector<int> z, y, x, w;
};

int main()
{
    Base* b = new Base;
    delete b;

    Derived* d = new Derived;
    delete d;
    return 0;
}

打印结果:
new 4 bytes
delete
new 56 bytes
delete

在基类被重载的operator new和operator delete也同样被子类继承。如你所见,operator new得到了两个类的正确大小。注意实际分配内存时使用了::operator new,这是前面所描述过的原生new。在调用前面的两个冒号很关键,是为了避免进行无限递归(没有它函数将一直调用自己下去)。

为什么你要为一个类重载operator new?这里有许多理由。

性能:默认的内存分配算符被设计成通用的。有时你想分配给一个非常特殊的对象,通过自定义分配方式可以明显地提高内存管理。许多书和文章都讨论了这种情况。尤其是"Modern C++ Design"的第4章展示了一个为较小的对象的非常好的设计并实现了自定义的分配算符。

调试 & 统计:完全掌握内存的分配和释放为调试提供了很好的灵活性,统计信息和性能分析。你可将你的分配算符插入进专门用来探测缓冲区溢出的守卫,通过分配算符和释放算符(deallocations)的比较来检测内存泄漏,为统计和性能分析积累各种指标,等等。

个性化:对于非标准的内存分配方式。一个很好的例子是内存池或arenas,它们都使得内存管理变得更简单。另一个例子是某个对象的完善的垃圾回收系统,可以通过为一个类或整个层面写你自己的operators new和delete。

研究在C++中new运算符是很有帮助的。分配是分两步进行:

1.  首先,用全局operator new指导系统请求原生内存。
2.  一旦请求内存被分配,一个新的对象就在其中开始构造。

The C++ FAQ给出一个很好的例子,我很愿意在这里这出来:

当你写下这段代码:

Foo* p = new Foo();

编译器会生成类似这种功能的代码:

复制代码 代码如下:

Foo* p;

 // don't catch exceptions thrown by the allocator itself

//不用捕捉分配器自己抛出的异常

 void* raw = operator new(sizeof(Foo));

 // catch any exceptions thrown by the ctor

//捕捉ctor抛出的任何异常

 try {
   p = new(raw) Foo();  // call the ctor with raw as this 像这样用raw调用ctor分配内存
 }
 catch (...) {
   // oops, ctor threw an exception 啊哦,ctor抛出了异常
   operator delete(raw);
   throw;  // rethrow the ctor's exception 重新抛出ctor的异常
 }

其中在try中很有趣的一段语法被称为"placement new",我们马上就会讨论到。为了使讨论完整,我们来看下用delete来释放一个对象时一个相似的情况,它也是分两步进行:

1.首先,将要被删除对象的析构函数被调用。
2.然后,被对象占用的内存通过全局operator delete函数返还给系统。

所以:
delete p;
等价于[2]:
if (p != NULL) {
  p->~Foo();
  operator delete(p);
}

这时正适合我重复这篇文章第一段提到的,如果一个类有它自己的operator new或 operator delete,这些函数将被调用,而不是调用全局的函数来分配和收回内存。

Placement new
现在,回来我们上面看到样例代码中的"placement new"问题。它恰好真的能用在C++代码中的语法。首先,我想简单地解释它如何工作。然后,我们将看到它在什么时候有用。

直接调用 placement new会跳过对象分配的第一步。也就是说我们不会向操作系统请求内存。而是告诉它有一块内存用来构造对象[3]。下面的代码表明了这点:

复制代码 代码如下:

int main(int argc, const char* argv[])
{
    // A "normal" allocation. Asks the OS for memory, so we
    // don't actually know where this ends up pointing.
    //一个正常的分配。向操作系统请求内存,所以我们并不知道它指向哪里
    int* iptr = new int;
    cerr << "Addr of iptr = " << iptr << endl;

    // Create a buffer large enough to hold an integer, and
    // note its address.
    //创建一块足够大的缓冲区来保存一个整型,请注意它的地址
    char mem[sizeof(int)];
    cerr << "Addr of mem = " << (void*) mem << endl;

    // Construct the new integer inside the buffer 'mem'.
    // The address is going to be mem's.
    //在缓冲区mem中构造新的整型,地址将变成mem的地址
    int* iptr2 = new (mem) int;
    cerr << "Addr of iptr2 = " << iptr2 << endl;

    return 0;
}

在我的机器上输出如下:

Addr of iptr = 0x8679008
Addr of mem = 0xbfdd73d8
Addr of iptr2 = 0xbfdd73d8

如你所见,placement new的结构很简单。而有趣的问题是,为什么我需要用这种东西?以下显示了placement new在一些场景确实很有用:

· 自定义非侵入式内存管理。当为一个类重载 operator new 同时也允许自定义内存管理,这里关键概念是非侵入式。重载一个类的 operator new需要你改变一个类的源代码。但假设我们有一个类的代码不想或者不能更改。我们如何仍能控制它的分配呢? Placement new就是答案。这种用 Placement new达到这个目的的通用编程技术叫做内存池,有时候也叫arenas[4]。

· 在一些程序中,在指定内存区域的分配对象是很必要的。一个例子是共享内存。另一个例子是嵌入式程序或使用内存映射的周边驱动程序,这些都可以很方便地在它们的“领地”分配对象。

· 许多容器库预先分配很大一块内存空间。当一个对象被添加,它们就必须在这里构造,因此就用上了placement new。典型的例子就是标准vector容器。

删除用placement new 分配的对象

一条C++箴言就是一个用new创建的对象应该用delete来释放。这个对placement new 同样适用吗?不完全是:

复制代码 代码如下:

int main(int argc, const char* argv[])
{
    char mem[sizeof(int)];
    int* iptr2 = new (mem) int;

    delete iptr2;       // Whoops, segmentation fault! 呜啊,段错误啦!

    return 0;
}

为了理解上面代码片段为什么delete iptr2会引起段错误(或某种内存异常,这个因操作系统而异),让我们回想下delete iptr2实际干了什么:

1.  First, the destructor of the object that's being deleted is called.

首先,调用将要被删除的对象的析构函数。

2.  Then, the memory occupied by the object is returned to the OS, represented by the global operator delete function.

然后,这个对象在操作系统中占用的内存用全局operator delete函数收回。

对于用placement new分配的对象,第一步是没有问题的,但第二步就可疑了。尝试释放一段没有被分配算符实际分配的内存就不对了,但上面的代码确实这么做了。iptr2指向了一段并没有用全局operator new分配的栈中的一段位置。然而,delete iptr2将尝试用全局operator delete来释放内存。当然会段错误啦。

那么我们应该怎么办?我们应该怎样正确地删除iptr2?当然,我们肯定不会认为编译器怎么会解决怎么翻译内存,毕竟,我们只是传了一个指针给placement new,那个指针可能是从栈里拿,从内存池里或者别的地方。所以必须手动根据实际情况来释放。

事实上,上面的placement new用法只是C++的new指定额外参数的广义placement new语法的一种特例。它在标准头文件中定义如下:

复制代码 代码如下:

inline void* operator new(std::size_t, void* __p) throw()
{
    return __p;
}

C++一个对应的带有相同参数的delete也被找到,它用来释放一个对象。它在头文件中定义如下:

复制代码 代码如下:

inline void  operator delete  (void*, void*) throw()
{
}

的确,C++运行并不知道怎么释放一个对象,所以delete函数没有操作。

怎么析构呢?对于一个int,并不真的需要一个析构函数,但假设代码是这样的:
char mem[sizeof(Foo)];
Foo* fooptr = new (mem) Foo;

对于某个有意义的类Foo。我们一旦不需要fooptr了,应该怎么析构它呢?我们必须显式调用它的析构函数:
fooptr->~Foo();
对,显式调用析构函数在C++中是合法的,并且这也是唯一一种正确的做法[5]。

结论
这是一个复杂的主题,并且这篇文章只起到一个介绍的作用,对C++的多种内存分配方法给出了一种“尝鲜”。一旦你研究一些细节会发现还有许多有趣的编程技巧(例如,实现一个内存池分配)。这些问题最好是在有上下文的情况下提出,而不是作为一个普通的介绍性文章的一部分。如果你想知道得更多,请查阅下面的资源列表。

资源
· C++ FAQ Lite, especially items 11.14 and 16.9

·  "The C++ Programming Language, 3rd edition" by Bjarne Stroustrup – 10.4.11

· "Effective C++, 3rd edition" by Scott Myers – item 52

·  "Modern C++ Design" by Andrei Alexandrescu – chapter 4

· Several StackOverflow discussions. Start with this one and browse as long as your patience lasts.


我仍会在operator new前面显式地写::(双冒号),虽然这里并不是必须的。恕我直言,这是一个很好的做法,特别当在重载operator new的类中,可以避免二义性。


[2]


注意到这里是检查是否为NULL。这样做使delete p 很安全,即使p是NULL。


[3]


对传给placement new的指针确保有足够的内存分配给对象,并且确保它们正确地对齐,这都是你的应该做的。


[4]


内存池本身是一个很大且迷人的话题。我并不打算在这里扩展,所以我鼓励你自己上网找些信息,WIKI如往常一样是个好地方(good start)。


[5]


事实上,标准的vector容器用这种方法去析构它保存的数据。

时间: 2024-08-19 17:56:28

operator new在C++中的各种写法总结_C 语言的相关文章

详解C语言编程中预处理器的用法_C 语言

预处理最大的标志便是大写,虽然这不是标准,但请你在使用的时候大写,为了自己,也为了后人. 预处理器在一般看来,用得最多的还是宏,这里总结一下预处理器的用法. #include <stdio.h> #define MACRO_OF_MINE #ifdef MACRO_OF_MINE #else #endif 上述五个预处理是最常看见的,第一个代表着包含一个头文件,可以理解为没有它很多功能都无法使用,例如C语言并没有把输入输入纳入标准当中,而是使用库函数来提供,所以只有包含了stdio.h这个头文

C++中string的模拟实现_C 语言

c++中的string类可以实现字符串对象的一系列操作,如下图就是从cplusplus上截取的string的一部分功能: 接下来我就简单模拟几个函数实现  首先,我们要给出完整的string类,包括构造函数,析构函数,私有成员char* str  并且在类内声明要实现的函数(本文我只实现了operator=,operator[ ],pushback(),以及三个operator+=,五个insert等)  #include<iostream> #include<cstring> u

实例讲解C++编程中lambda表达式的使用_C 语言

函数对象与Lambdas你编写代码时,尤其是使用 STL 算法时,可能会使用函数指针和函数对象来解决问题和执行计算.函数指针和函数对象各有利弊.例如,函数指针具有最低的语法开销,但不保持范围内的状态,函数对象可保持状态,但需要类定义的语法开销. lambda 结合了函数指针和函数对象的优点并避免其缺点.lambda 与函数对象相似的是灵活并且可以保持状态,但不同的是其简洁的语法不需要显式类定义. 使用lambda,相比等效的函数对象代码,您可以写出不太复杂并且不容易出错的代码. 下面的示例比较l

Linux c中define的用法小结_C 语言

define的用法只是一种纯粹的替换功能,宏定义的替换是预处理器处理的替换. 一:简单的宏定义用法 格式:#define 标识符 替换内容 替换的内容可以是数字,字符,字符串,特殊字符和空格,后面是什么内容就会替换成什么内容. 例如: #define  N   5 效果等同于 int  array [5]; int  array[N]; 同样效果: #define N = 5 int array[N];    效果等同于 int  array[= 5]; 同样效果: #define N   5;

浅谈C语言编程中的布尔bool数据类型_C 语言

我们知道在C++里有专门的bool类型,用来表示真或假.但是在C语言里没有这样的类型(至少我是一直这么认为的),表达式的值0为假,非0为真.所以条件判断语句( if(-).while(-) )非常灵活,甚至一个指针类型都可以是条件表达式. 为了使程序更清晰,我们常常会给出如下的宏定义: typedef int BOOL; #define TRUE 1 #define FALSE 0 这是最常见的写法,能被任何C语言编译器认可. 今天我在一段程序里看见这么一行 #include ,这个陌生的头文件

C++中vector容器的用法_C 语言

在c++中,vector是一个十分有用的容器,下面对这个容器做一下总结. 1 基本操作 (1)头文件#include<vector>. (2)创建vector对象,vector<int> vec; (3)尾部插入数字:vec.push_back(a); (4)使用下标访问元素,cout<<vec[0]<<endl;记住下标是从0开始的. (5)使用迭代器访问元素. vector<int>::iterator it; for(it=vec.begi

C++中的常量定义小结_C 语言

本篇笔记总结自一次代码检视. 一般来说,使用C语言编程时我们都习惯在代码当中使用C当中的宏定义来定义一个数值常量: #define MY_CONST 7 在C++开发项目时,也会经常存在沿袭C当中常量用法情况.所以,如下的一种写法看起来反倒觉得有些不正宗了: class MyClass { static const int my_const = 7; // ... }; 站在编译器的角度,这两种写法都是合法的,但在使用的时候总得二中择一,究竟哪种更合适呢?之前有所耳闻在C++中应该尽可能少的使用

浅谈C/C++ 语言中的表达式求值_C 语言

经常可以在一些讨论组里看到下面的提问:"谁知道下面C语句给n赋什么值?" m = 1; n = m+++m++; 最近有位不相识的朋友发email给我,问为什么在某个C++系统里,下面表达式打印出两个4,而不是4和5: a = 4; cout << a++ << a; C++ 不是规定 << 操作左结合吗?是C++ 书上写错了,还是这个系统的实现有问题? 注:运行a = 4; cout << a++ << a; 如在Visua

成员初始化列表与构造函数体中的区别详细解析_C 语言

论坛中回答一个别人问题 C++ Primer中在讲构造函数初始化列表的时候有这么一段话:无论是在构造函数初始化列表中初始化成员,还是在构造函数体中对它们赋值,最终结果是相同的.不同之处在于,使用构造函数初始化列表的版本初始化数据成员,没有定义初始化列表的构造函数版本在构造函数体中对数据成员赋值. 请问这里的初始化数据成员与对数据成员赋值的含义是什么?有什么区别? 我知道在数据成员有默认构造函数时是有不同的,但对其他类型的成员呢?其他类型成员的初始化和赋值有区别吗?================