C++ 11右值引用

C++ 11中引入的一个非常重要的概念就是右值引用。理解右值引用是学习“移动语义”(move semantics)的基础。而要理解右值引用,就必须先区分左值与右值。
      

对左值和右值的一个最常见的误解是:等号左边的就是左值,等号右边的就是右值。左值和右值都是针对表达式而言的,左值是指表达式结束后依然存在的持久对
象,右值是指表达式结束时就不再存在的临时对象。一个区分左值与右值的便捷方法是:看能不能对表达式取地址,如果能,则为左值,否则为右值。下面给出一些
例子来进行说明。

 int a = 10;
 int b = 20;
 int *pFlag = &a;
 vector<int> vctTemp;
 vctTemp.push_back(1);
 string str1 = "hello ";
 string str2 = "world";
 const int &m = 1;

       请问,a,b, a+b, a++, ++a, pFlag, *pFlag, vctTemp[0], 100, string("hello"), str1, str1+str2, m分别是左值还是右值?
           a和b都是持久对象(可以对其取地址),是左值;
           a+b是临时对象(不可以对其取地址),是右值;
           a++是先取出持久对象a的一份拷贝,再使持久对象a的值加1,最后返回那份拷贝,而那份拷贝是临时对象(不可以对其取地址),故其是右值;
           ++a则是使持久对象a的值加1,并返回那个持久对象a本身(可以对其取地址),故其是左值;
           pFlag和*pFlag都是持久对象(可以对其取地址),是左值;
           vctTemp[0]调用了重载的[]操作符,而[]操作符返回的是一个int &,为持久对象(可以对其取地址),是左值;
           100和string("hello")是临时对象(不可以对其取地址),是右值;
           str1是持久对象(可以对其取地址),是左值;
           str1+str2是调用了+操作符,而+操作符返回的是一个string(不可以对其取地址),故其为右值;
           m是一个常量引用,引用到一个右值,但引用本身是一个持久对象(可以对其取地址),为左值。
      区分清楚了左值与右值,我们再来看看左值引用。左值引用根据其修饰符的不同,可以分为非常量左值引用和常量左值引用。
     

非常量左值引用只能绑定到非常量左值,不能绑定到常量左值、非常量右值和常量右值。如果允许绑定到常量左值和常量右值,则非常量左值引用可以用于修改常量
左值和常量右值,这明显违反了其常量的含义。如果允许绑定到非常量右值,则会导致非常危险的情况出现,因为非常量右值是一个临时对象,非常量左值引用可能
会使用一个已经被销毁了的临时对象。
      常量左值引用可以绑定到所有类型的值,包括非常量左值、常量左值、非常量右值和常量右值。
      可以看出,使用左值引用时,我们无法区分出绑定的是否是非常量右值的情况。那么,为什么要对非常量右值进行区分呢,区分出来了又有什么好处呢?这就牵涉到C++中一个著名的性能问题——拷贝临时对象。考虑下面的代码:

vector<int> GetAllScores()
{
 vector<int> vctTemp;
 vctTemp.push_back(90);
 vctTemp.push_back(95);
 return vctTemp;
}

       当使用vector<int> vctScore =
GetAllScores()进行初始化时,实际上调用了三次构造函数。尽管有些编译器可以采用RVO(Return Value
Optimization)来进行优化,但优化工作只在某些特定条件下才能进行。可以看到,上面很普通的一个函数调用,由于存在临时对象的拷贝,导致了额
外的两次拷贝构造函数和析构函数的开销。当然,我们也可以修改函数的形式为void GetAllScores(vector<int>
&vctScore),但这并不一定就是我们需要的形式。另外,考虑下面字符串的连接操作:

 string s1("hello");
 string s = s1 + "a" + "b" + "c" + "d" + "e";

      
在对s进行初始化时,会产生大量的临时对象,并涉及到大量字符串的拷贝操作,这显然会影响程序的效率和性能。怎么解决这个问题呢?如果我们能确定某个值是
一个非常量右值(或者是一个以后不会再使用的左值),则我们在进行临时对象的拷贝时,可以不用拷贝实际的数据,而只是“窃取”指向实际数据的指针(类似于
STL中的auto_ptr,会转移所有权)。C++ 11中引入的右值引用正好可用于标识一个非常量右值。C++
11中用&表示左值引用,用&&表示右值引用,如:

 int &&a = 10; 

       右值引用根据其修饰符的不同,也可以分为非常量右值引用和常量右值引用。
      
非常量右值引用只能绑定到非常量右值,不能绑定到非常量左值、常量左值和常量右值(VS2010
beta版中可以绑定到非常量左值和常量左值,但正式版中为了安全起见,已不允许)。如果允许绑定到非常量左值,则可能会错误地窃取一个持久对象的数据,
而这是非常危险的;如果允许绑定到常量左值和常量右值,则非常量右值引用可以用于修改常量左值和常量右值,这明显违反了其常量的含义。
       常量右值引用可以绑定到非常量右值和常量右值,不能绑定到非常量左值和常量左值(理由同上)。
       有了右值引用的概念,我们就可以用它来实现下面的CMyString类。

class CMyString
{
public:
    // 构造函数
 CMyString(const char *pszSrc = NULL)
 {
  cout << "CMyString(const char *pszSrc = NULL)" << endl;
  if (pszSrc == NULL)
  {
   m_pData = new char[1];
   *m_pData = '\0';
  }
  else
  {
   m_pData = new char[strlen(pszSrc)+1];
   strcpy(m_pData, pszSrc);
  }
 }

    // 拷贝构造函数
 CMyString(const CMyString &s)
 {
  cout << "CMyString(const CMyString &s)" << endl;
  m_pData = new char[strlen(s.m_pData)+1];
  strcpy(m_pData, s.m_pData);
 }

    // move构造函数
 CMyString(CMyString &&s)
 {
  cout << "CMyString(CMyString &&s)" << endl;
  m_pData = s.m_pData;
  s.m_pData = NULL;
 }

    // 析构函数
 ~CMyString()
 {
  cout << "~CMyString()" << endl;
  delete [] m_pData;
  m_pData = NULL;
 }

    // 拷贝赋值函数
 CMyString &operator =(const CMyString &s)
 {
  cout << "CMyString &operator =(const CMyString &s)" << endl;
  if (this != &s)
  {
   delete [] m_pData;
   m_pData = new char[strlen(s.m_pData)+1];
   strcpy(m_pData, s.m_pData);
  }
  return *this;
 }

    // move赋值函数
 CMyString &operator =(CMyString &&s)
 {
  cout << "CMyString &operator =(CMyString &&s)" << endl;
  if (this != &s)
  {
   delete [] m_pData;
   m_pData = s.m_pData;
   s.m_pData = NULL;
  }
  return *this;
 }

private:
 char *m_pData;
};

    
可以看到,上面我们添加了move版本的构造函数和赋值函数。那么,添加了move版本后,对类的自动生成规则有什么影响呢?唯一的影响就是,如果提供了
move版本的构造函数,则不会生成默认的构造函数。另外,编译器永远不会自动生成move版本的构造函数和赋值函数,它们需要你手动显式地添加。
        当添加了move版本的构造函数和赋值函数的重载形式后,某一个函数调用应当使用哪一个重载版本呢?下面是按照判决的优先级列出的3条规则:
             1、常量值只能绑定到常量引用上,不能绑定到非常量引用上。
             2、左值优先绑定到左值引用上,右值优先绑定到右值引用上。
             3、非常量值优先绑定到非常量引用上。
       

当给构造函数或赋值函数传入一个非常量右值时,依据上面给出的判决规则,可以得出会调用move版本的构造函数或赋值函数。而在move版本的构造函数或
赋值函数内部,都是直接“移动”了其内部数据的指针(因为它是非常量右值,是一个临时对象,移动了其内部数据的指针不会导致任何问题,它马上就要被销毁
了,我们只是重复利用了其内存),这样就省去了拷贝数据的大量开销。
       
一个需要注意的地方是,拷贝构造函数可以通过直接调用*this =
s来实现,但move构造函数却不能。这是因为在move构造函数中,s虽然是一个非常量右值引用,但其本身却是一个左值(是持久对象,可以对其取地
址),因此调用*this =
s时,会使用拷贝赋值函数而不是move赋值函数,而这已与move构造函数的语义不相符。要使语义正确,我们需要将左值绑定到非常量右值引用上,C++
11提供了move函数来实现这种转换,因此我们可以修改为*this = move(s),这样move构造函数就会调用move赋值函数。

时间: 2024-09-03 20:57:43

C++ 11右值引用的相关文章

c++11-一个关于C++11右值引用的问题

问题描述 一个关于C++11右值引用的问题 代码如下: class Foo { public: Foo sorted() const &;//---------------成员函数1 Foo sorted() const &&;//-------------成员函数2 }; Foo Foo::sorted() const & { cout << "sorted() const & " << endl; return Foo

浅析C++11中的右值引用、转移语义和完美转发_C 语言

1. 左值与右值:     C++对于左值和右值没有标准定义,但是有一个被广泛认同的说法:可以取地址的,有名字的,非临时的就是左值;不能取地址的,没有名字的,临时的就是右值.     可见立即数,函数返回的值等都是右值;而非匿名对象(包括变量),函数返回的引用,const对象等都是左值.     从本质上理解,创建和销毁由编译器幕后控制的,程序员只能确保在本行代码有效的,就是右值(包括立即数);而用户创建的,通过作用域规则可知其生存期的,就是左值(包括函数返回的局部变量的引用以及const对象)

c++-C++右值引用问题:关于std::move

问题描述 C++右值引用问题:关于std::move 假设有如下代码: int &&r1=42; int &&rr2=rr1;//error int &&r3=std::move(rr1); //ok 这里在调用move函数之后是否可以继续使用rr1变量,或者说下面的代码是否是合理的. cout<<rr1<<endl; 请解释一下这是为什么? 解决方案 "可以"使用,但是从语义上说不应该使用了.你可以看看std::

深入解读C++中的右值引用_C 语言

右值引用(及其支持的Move语意和完美转发)是C++0x将要加入的最重大语言特性之一,这点从该特性的提案在C++ - State of the Evolution列表上高居榜首也可以看得出来. 从实践角度讲,它能够完美解决C++中长久以来为人所诟病的临时对象效率问题.从语言本身讲,它健全了C++中的引用类型在左值右值方面的缺陷.从库设计者的角度讲,它给库设计者又带来了一把利器.从库使用者的角度讲,不动一兵一卒便可以获得"免费的"效率提升- 在标准C++语言中,临时量(术语为右值,因其出

漫谈C++11利器之右值引用(move语义&amp;Perfect Forwarding)

该文章来自阿里巴巴技术协会(ATA) 作者:空溟  C++11(2011)标准推出已经很长时间了,最接地气的特性就要属"右值引用"了(Rvalue Reference),它实现了move语义和完美转发(Perfect Forwarding),一开始觉得不好理解,所以一直想对其做一个总结.网上也有很多牛人已经做了细致的分析,但基本都是讲原理的多,本文就从Rvalue Reference引入动机入手,举例说明右值引用的使用场景,从而引出move语义和完美转发. 1. 右值引用动机: 从一个

C++11新特性:右值引用和转移构造函数

问题背景   [cpp] view plaincopy   #include <iostream>       using namespace std;       vector<int> doubleValues (const vector<int>& v)   {       vector<int> new_values( v.size() );       for (auto itr = new_values.begin(), end_itr 

《深入理解C++11:C++ 11新特性解析与应用》——3.3 右值引用:移动语义和完美转发

3.3 右值引用:移动语义和完美转发 类别:类作者 3.3.1 指针成员与拷贝构造 对C++程序员来说,编写C++程序有一条必须注意的规则,就是在类中包含了一个指针成员的话,那么就要特别小心拷贝构造函数的编写,因为一不小心,就会出现内存泄露.我们来看看代码清单3-16中的例子. 在代码清单3-16中,我们定义了一个HasPtrMem的类.这个类包含一个指针成员,该成员在构造时接受一个new操作分配堆内存返回的指针,而在析构的时候则会被delete操作用于释放之前分配的堆内存.在main函数中,我

c++ 11 移动语义、std::move 左值、右值、将亡值、纯右值、右值引用

为什么要用移动语义 先看看下面的代码 // rvalue_reference.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> class HugeMem { public: HugeMem(int size) : sz(size) { pIntData = new int[sz]; } HugeMem(const HugeMem & h) : sz(h.sz) { pIntData =

c++-C++中的左值/右值引用问题

问题描述 C++中的左值/右值引用问题 int getInt() { int a = 3; return a; } int& getIntR() { int a = 3; return a; } int getRL() { return 1; } int&& getRRL() { return getRL(); } int main() { // 正确,以返回的临时变量初始化a int a = getInt(); // 正确,以返回的值初始化a int b = getIntR();