[家里蹲大学数学杂志]第256期第五届[2013年]全国大学生数学竞赛[非数学类]试题

1($4\times 6'=24'$) 解答下列各题.

(1)求极限 $\dps{\ls{n}\sez{1+\sin\pi\sqrt{1+4n^2}}^n}$.

(2)证明广义积分 $\dps{\int_0^\infty\frac{\sin x}{x}\rd x}$ 不是绝对收敛的.

(3)设函数 $y=y(x)$ 由 $x^3+3x^2y-2y^3=2$ 所确定, 求 $y(x)$ 的极值.

(4)过函数 $y=\sqrt[3]{x}\ (x\geq 0)$ 上的点 $A$ 作切线, 使该切线与曲线及 $x$ 轴所围成的平面图形的面积为 $\dps{\frac{3}{4}}$, 求点 $A$ 的坐标.

 

2($12'$) 计算定积分 $\dps{\int_{-\pi}^\pi \frac{x\sin x \arctan e^x}{1+\cos^2x}\rd x}$.

 

3($12'$) 设 $f(x)$ 在 $x=0$ 处存在二阶导数, 且 $\dps{\lim_{x\to 0}\frac{f(x)}{x}=0}$. 证明: 级数 $\dps{\sum_{n=1}^\infty \sev{f\sex{\frac{1}{n}}}}$ 收敛.

 

4($10'$) 设 $[a,b]$ 上的可微函数 $f$ 满足 $$\bex f(x)\in [0,\pi];\quad f'(x)\geq m>0,\quad\forall\ a\leq x\leq b. \eex$$ 试证: $$\bex \sev{\int_a^b \sin f(x)\rd x}\leq\frac{2}{m}. \eex$$

 

5($14'$) 设 $\vSa$ 是一个光滑封闭曲面, 方向朝外, 给定第二型曲面积分 $$\bex I=\iint_\vSa (x^3-x)\rd y\rd z+(2y^3-y)\rd z\rd x +(3z^3-z)\rd x\rd y. \eex$$ 试确定曲面 $\vSa$, 使得积分 $I$ 的值达到最小, 并求该最小值.

 

6($14'$) 设 $\dps{I_\alpha(r)=\oint_C\frac{y\rd x-x\rd y}{(x^2+y^2)^\alpha}}$, 其中 $\alpha$ 为常数, 曲线 $C$ 为椭圆 $x^2+xy+y^2=r^2$, 取正向. 求极限 $$\bex \lim_{r\to +\infty}I_\alpha(r). \eex$$

 

7($14'$) 判断级数 $\dps{\sum_{n=1}^\infty \frac{ 1+\frac{1}{2}+\cdots+\frac{1}{n}} {(n+1)(n+2)}}$ 的敛散性, 若收敛, 求其和. 

时间: 2024-10-24 03:58:40

[家里蹲大学数学杂志]第256期第五届[2013年]全国大学生数学竞赛[非数学类]试题的相关文章

[家里蹲大学数学杂志]第254期第五届[2013年]全国大学生数学竞赛[数学类]试题

1 ($15'$) 平面 $\bbR^2$ 上两个半径为 $r$ 的圆 $C_1$ 和 $C_2$ 外切于 $P$ 点, 将圆 $C_2$ 沿 $C_1$ 的圆周 (无滑动) 滚动一周, 这时, $C_2$ 上的 $P$ 点也随 $C_2$ 的运动而运动. 记 $\vGa$ 为 $P$ 点的运动轨迹曲线, 称为心脏线. 现设 $C$ 为以 $P$ 的初始位置 (切点) 为圆心的圆, 其半径为 $R$, 记 $$\bex \gamma:\ \bbR^2\cup\sed{\infty}\to \bb

[家里蹲大学数学杂志]第264期武汉大学2013年数学分析考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录  

[家里蹲大学数学杂志]第265期武汉大学2013年高等代数考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录  

[家里蹲大学数学杂志]第266期中南大学2013年高等代数考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录

[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答

    1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ. \eex$$ 则 $A\cap [n,n+1)$ 也可数. 据 $$\bex A=\cup_{n=-\infty}^\infty (A\cap [n,n+1)) \eex$$ 即知 $A$ 可数, 这是一个矛盾. 故有结

第五届[2013年]全国大学生数学竞赛[数学类]试题五参考解答

设 $f:[-1,1\to\bbR$ 为偶函数, $f$ 在 $[0,1]$ 上是增函数; 又设 $g$ 是 $[-1,1]$ 上的凸函数, 即 $$\bex g(tx+(1-t)y)\leq tg(x)+(1-t)g(y),\quad \forall\ x,y\in [0,1],\quad \forall\ t\in [0,1]. \eex$$ 试证: $$\bex 2\int_{-1}^1 f(x)g(x)\rd x \geq \int_{-1}^1 f(x)\rd x\cdot \int_

家里蹲大学数学杂志期刊模式目录

张祖锦第1卷第1期华南理工大学2010年数学分析考研试题参考解答   张祖锦第1卷第2期华南理工大学2010年高等代数考研试题参考解答   张祖锦第1卷第3期华南理工大学2009年数学分析考研试题参考解答   张祖锦第1卷第4期华南理工大学2009年高等代数考研试题参考解答   张祖锦第1卷第5期浙江大学2010年数学分析考研试题参考解答   张祖锦第1卷第6期浙江大学2010年高等代数考研试题参考解答   张祖锦第1卷第7期浙江大学2009年数学分析考研试题参考解答   张祖锦第1卷第8期浙江

[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答

    1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}}+1, \eex$$ 则当 $n\geq N$ 时, $$\bex \sev{\frac{2015\cdot 2^n+20\sin n}{n!}} \leq \frac{2015\cdot 2\cdots

[家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

 1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \Div(\varrho\bbu\otimes \bbu) -\mu\lap \bbu -(\lambda+\mu)\n\Div\bbu +\n \varrho^\gamma =\varrho\bbf+\bbg. \ea\right. \eee$$      2. 假设  先作一些初步的假设: