数据挖掘与数据化运营实战. 3.13 决策支持

3.13 决策支持

决策支持是现代企业管理中大家耳熟能详的词汇。数据分析挖掘所承担的决策支持主要是指通过数据分析结论、数据模型对管理层的管理、决策提供响应和支持,从而帮助决策层提高决策水平和质量。

对于现代企业和事业单位的管理层来说,数据分析的决策支持一部分是通过计算机应用系统自动实现的,这部分就是所谓的决策支持系统(Decision Support System,DSS),最常见的输出物就是企业层面的核心日报、周报等。每天会由计算机应用系统自动生成这些报表,供管理层决策参考,另一部分是非常规的、特定的分析内容,包括特定的专题分析、专题调研等。

无论是报表还是专题分析,对于数据分析师来说,所涉及的承担决策支持的工作与支持业务部门的数据分析,在技术和方法上并没有本质的区别和差异。但是在以下方面会有一定的差别:

决策支持的数据分析工作要求数据分析师站在更高的角度,用更宽的视野进行数据分析。由于是供企业决策层参考的,所以数据分析师要站在企业全景、市场竞争的全局来考虑分析思路和结论。

服务的对象不同。这似乎是废话,但是在数据分析挖掘实践中,这的确也是数据分析师不能回避的问题。在实践中,因为是为决策层服务的,所以对分析的时间要求常会更严格,项目的优先级也会更高,而且对结论的准确性和精确性的要求也会相对比较苛刻。

时间: 2024-09-30 00:50:01

数据挖掘与数据化运营实战. 3.13 决策支持的相关文章

数据挖掘与数据化运营实战

大数据技术丛书 数据挖掘与数据化运营实战:思路.方法.技巧与应用 卢辉 著 图书在版编目(CIP)数据 数据挖掘与数据化运营实战:思路.方法.技巧与应用 / 卢辉著.-北京:机械工业出版社,2013.6 (大数据技术丛书) ISBN 978-7-111-42650-9 I. 数- II. 卢- III. 数据采集 IV. TP274 中国版本图书馆CIP数据核字(2013)第111479号 版权所有·侵权必究 封底无防伪标均为盗版 本书法律顾问 北京市展达律师事务所     本书是目前有关数据挖

数据挖掘与数据化运营实战.导读

 本书是目前有关数据挖掘在数据化运营实践领域比较全面和系统的著作,也是诸多数据挖掘书籍中为数不多的穿插大量真实的实践应用案例和场景的著作,更是创造性地针对数据化运营中不同分析挖掘课题类型,推出一一对应的分析思路集锦和相应的分析技巧集成,为读者提供"菜单化"实战锦囊的著作.作者结合自己数据化运营实践中大量的项目经验,用通俗易懂的"非技术"语言和大量活泼生动的案例,围绕数据分析挖掘中的思路.方法.技巧与应用,全方位整理.总结.分享,帮助读者深刻领会和掌握"以业

数据挖掘与数据化运营实战. 2.4 互联网行业数据挖掘应用的特点

2.4 互联网行业数据挖掘应用的特点 相对于传统行业而言,互联网行业的数据挖掘和数据化运营有如下的一些主要特点: 数据的海量性.互联网行业相比传统行业第一个区别就是收集.存储的数据是海量的,这一方面是因为互联网的使用已经成为普通人日常生活和工作中不可或缺的一部分,另一方面更是因为用户网络行为的每一步都会被作为网络日志记录下来.海量的数据.海量的字段.海量的信息,尤其是海量的字段,使得分析之前对于分析字段的挑选和排查工作显得无比重要,无以复加.如何大浪淘沙挑选变量则为重中之重,对此很难一言以蔽之的

数据挖掘与数据化运营实战. 2.2 统计分析与数据挖掘的主要区别

2.2 统计分析与数据挖掘的主要区别 统计分析与数据挖掘有什么区别呢?从实践应用和商业实战的角度来看,这个问题并没有很大的意义,正如"不管白猫还是黑猫,抓住老鼠才是好猫"一样,在企业的商业实战中,数据分析师分析问题.解决问题时,首先考虑的是思路,其次才会对与思路匹配的分析挖掘技术进行筛选,而不是先考虑到底是用统计技术还是用数据挖掘技术来解决这个问题. 从两者的理论来源来看,它们在很多情况下都是同根同源的.比如,在属于典型的数据挖掘技术的决策树里,CART.CHAID等理论和方法都是基于

数据挖掘与数据化运营实战. 2.3 数据挖掘的主要成熟技术以及在数据化运营中的主要应用

2.3 数据挖掘的主要成熟技术以及在数据化运营中的主要应用 2.3.1 决策树 决策树(Decision Tree)是一种非常成熟的.普遍采用的数据挖掘技术.之所以称为树,是因为其建模过程类似一棵树的成长过程,即从根部开始,到树干,到分枝,再到细枝末节的分叉,最终生长出一片片的树叶.在决策树里,所分析的数据样本先是集成为一个树根,然后经过层层分枝,最终形成若干个结点,每个结点代表一个结论. 决策树算法之所以在数据分析挖掘应用中如此流行,主要原因在于决策树的构造不需要任何领域的知识,很适合探索式的

数据挖掘与数据化运营实战. 1.2 数据化运营的主要内容

1.2 数据化运营的主要内容 虽然目前企业界和学术界对于"数据化运营"的定义没有达成共识,但这并不妨碍"数据化运营"思想和实践在当今企业界尤其是互联网行业如火如荼地展开.阿里巴巴集团早在2010年就已经在全集团范围内正式提出了"数据化运营"的战略方针并逐步实施数据化运营,腾讯公司也在"2012年腾讯智慧上海主题日"高调宣布"大数据化运营的黄金时期已经到来,如何整合这些数据成为未来的关键任务". 综合业界尤其

数据挖掘与数据化运营实战. 3.4 用户路径分析

3.4 用户路径分析 用户路径分析是互联网行业特有的分析专题,主要是分析用户在网页上流转的规律和特点,发现频繁访问的路径模式,这些路径的发现可以有很多业务用途,包括提炼特定用户群体的主流路径.网页设计的优化和改版.用户可能浏览的下一个页面的预测.特定群体的浏览特征等.从这些典型的用途示例中可以看到,数据化运营中的很多业务部门都需要应用用户路径分析,包括运营部门.产品设计部门(PD).用户体验设计部门(User Experience Design,UED)等. 路径分析所用的数据主要是Web服务器

数据挖掘与数据化运营实战. 1.3 为什么要数据化运营

1.3 为什么要数据化运营 数据化运营首先是现代企业竞争白热化.商业环境变成以消费者为主的"买方市场"等一系列竞争因素所呼唤的管理革命和技术革命.中国有句古语"穷则思变",当传统的营销手段.运营方法已经被同行普遍采用,当常规的营销技术.运营方法已经很难明显提升企业的运营效率时,竞争必然呼唤革命性的改变去设法提升企业的运营效率,从而提升企业的市场竞争力.时势造英雄,生逢其时的"数据化运营"恰如及时雨,登上了大数据时代企业运营的大舞台,在互联网运营的

数据挖掘与数据化运营实战. 3.2 目标客户的预测(响应、分类)模型

3.2 目标客户的预测(响应.分类)模型 这里的预测(响应.分类)模型包括流失预警模型.付费预测模型.续费预测模型.运营活动响应模型等. 预测(响应.分类)模型是数据挖掘中最常用的一种模型类型,几乎成了数据挖掘技术应用的一个主要代名词.很多书籍介绍到数据挖掘的技术和应用,首先都会列举预测(响应.分类)模型,主要的原因可能是响应模型的核心就是响应概率,而响应概率其实就是我们在第1章中介绍的数据化运营六要素里的核心要素-概率(Probability),数据化运营6要素的核心是以数据分析挖掘支撑的目标