Android GUI系统之SurfaceFlinger(2) Gralloc与Framebuffer

1.1 Gralloc与Framebuffer

相信做过Linux开发的人对framebuffer不会太陌生,它是内核系统提供的一个与硬件无关的显示抽象层。之所以称之为buffer,是由于它也是系统存储空间的一部分,是一块包含屏幕显示信息的缓冲区。由此可见,在“一切都是文件”的Linux系统中,Framebuffer被看成了终端monitor的“化身”。它借助于文件系统向上层提供统一而方便的操作接口,从而让用户空间程序可以不用修改就能适应多种屏幕——无论这些屏幕是哪家厂商、什么型号,都由framebuffer内部来兼容。

在Android系统中,framebuffer提供的设备文件节点是/dev/graphics/fb*。因为理论上支持多个屏幕显示,所以fb按数字序号进行排列,即fb0、fb1等等。其中第一个fb0是主显示屏幕,必须存在。如下是某设备的fb设备截图:

图 11?2 fb节点

根据前面章节学习过的知识,Android中各子系统通常不会直接基于Linux驱动来实现,而是由HAL层间接引用底层架构,在显示系统中也同样如此——它借助于HAL层来操作帧缓冲区,而完成这一中介任务的就是Gralloc,下面我们分几个方面来介绍。

<1>  Gralloc的加载

Gralloc对应的模块是由FramebufferNativeWindow(OpenGLES的本地窗口之一,后面小节有详细介绍)在构造时加载的,即:

hw_get_module(HWC_HARDWARE_MODULE_ID, &mModule);

这个hw_get_module函数我们在前面已经见过很多次了,它是上层加载HAL库的入口,这里传入的模块ID名为:

#define GRALLOC_HARDWARE_MODULE_ID  "gralloc"

按照hw_get_module的作法,它会在如下路径中查找与ID值匹配的库:

#define HAL_LIBRARY_PATH1 "/system/lib/hw"

#define HAL_LIBRARY_PATH2 "/vendor/lib/hw"

lib库名有如下几种形式:

   gralloc.[ro.hardware].so

   gralloc.[ro.product.board].so

   gralloc.[ro.board.platform].so

   gralloc.[ro.arch].so

或者当上述的系统属性组成的文件名都不存在时,就使用默认的:

   gralloc.default.so

最后这个库是Android原生态的实现,位置在hardware/libhardware/modules/gralloc/中,它由gralloc.cpp、framebuffer.cpp和mapper.cpp三个主要源文件编译生成。

时间: 2024-11-04 23:08:14

Android GUI系统之SurfaceFlinger(2) Gralloc与Framebuffer的相关文章

Android GUI系统之SurfaceFlinger(1)OpenGLES与EGL

第1章  GUI系统之SurfaceFlinger 在进入GUI系统的学习前,建议大家可以先阅读本书应用篇中的"OpenGLES"章节,并参阅OpenGL ES官方指南.因为Android的GUI系统是基于OpenGL/EGL来实现的,如果没有一定基础的话,分析源码时有可能会"事倍功半". 1.1 OpenGLES与EGL SurfaceFlinger虽然是GUI的核心,但相对于OpenGL ES来讲,它其实只是一个"应用". 对于没有做过Ope

Android GUI系统之SurfaceFlinger(11) SurfaceComposerClient

1.1.1 SurfaceComposerClient 图 11?28 每个应用程序在SurfaceFlinger中都对应一个Client SurfaceFlinger运行于SystemServer这一系统进程中,需要UI界面显示的应用程序则通过binder服务与它进行跨进程通信.在音频系统的学习中,每一个AudioTrack在AudioFlinger中都可以找到一个对应的Track实现.这种设计方式同样适用于显示系统,即任何有UI界面的程序都在SurfaceFlinger中有且仅有一个Clie

Android GUI系统之SurfaceFlinger(4)

opengl es本地窗口SurfaceTextureClient 1.1.1 SurfaceTextureClient 针对应用程序端的本地窗口是SurfaceTextureClient,和FramebufferNativeWindow一样,它必须继承ANativeWindow: class SurfaceTextureClient    : publicANativeObjectBase<ANativeWindow, SurfaceTextureClient,RefBase> 这个本地窗口

Android GUI系统之SurfaceFlinger(3)

Android中的本地窗口FramebufferNativewindow  1.1 Android中的本地窗口 在OpenGL的学习过程中,我们不断提及"本地窗口"(NativeWindow)这一概念.那么对于Android系统来说,它是如何将OpenGL ES本地化的呢,或者说,它提供了什么样的本地窗口? 根据整个Android系统的GUI设计理念,我们不难猜想到至少需要两种本地窗口: 面向管理者(SurfaceFlinger) 既然SurfaceFlinger扮演了系统中所有UI界

Android GUI系统之SurfaceFlinger(18) postFramebuffer

1.1.1 postFramebuffer 在多缓冲区机制中,只有把显示数据写入framebuffer才能真正在物理屏幕上显示.前面几个小节的输出都是backbuffers,我们还需要最后一步--postFramebuffer. void SurfaceFlinger::postFramebuffer() {-        const DisplayHardware&hw(graphicPlane(0).displayHardware());    -    hw.flip(mSwapRegi

Android GUI系统之SurfaceFlinger(12) VSync信号的产生和处理

1.1 VSync的产生和处理 前面小节ProjectButter中我们学习了Android 4.1显示系统中的新特性,其中一个就是加入了VSync同步.我们从理论的角度分析了采用这一机制的必要性和运作机理,那么SurfaceFlinger具体是如何实施的呢? 先来想一下有哪些东西要考虑: · VSync信号的产生和分发 如果有硬件主动发出这一信号,那是最好的了;否则就得通过软件定时模拟来产生 · VSync信号的处理 当信号产生后,SurfaceFlinger如何在最短的时间内响应,具体处理流

Android GUI系统之SurfaceFlinger(9) Project Butter黄油计划

1.1 SurfaceFlinger 从这一小节开始,我们正式切入SurfaceFlinger的分析.为了保持讲解的连贯性,部分内容可能在前面的章节中已经有所涉及了,接下来将会对其中的细节做更多的扩展讲解. 内容组织如下: l  首先介绍Android 4.1引入的新特性(Project Butter),理解这个项目是必要的,可以说SurfaceFlinger有很大一部分的内容就是围绕它来的 l  SurfaceFlinger的启动过程及工作方式 l  SurfaceFlinger与Buffer

Android GUI系统之SurfaceFlinger(7) 应用程序的典型绘图流程

1.1.1 应用程序的典型绘图流程 我们知道,BufferQueue有最多达32个BufferSlot,这样设计的目的是什么?一个可能的原因就是提高图形渲染速度.因为假如只有两个buffer,可以想象一下,当应用程序这个生产者的产出效率大于消费者的处理速度时,很快它就会dequeue完所有缓冲区而处于等待状态,从而导致不必要的麻烦.当然,实际上32只是最大的容量,具体值是可以设置的,大家可以结合后面的ProjectButter小节来理解一下. 前面小节我们已经学习了BufferQueue的内部原

Android GUI系统之SurfaceFlinger(17) handleRepaint

1.1.1 handleRepaint 经过handleTransaction和handlePageFlip等步骤的准备工作后,现在可以合成各图层数据了. void SurfaceFlinger::handleRepaint() {- mSwapRegion.orSelf(mDirtyRegion);    const DisplayHardware&hw(graphicPlane(0).displayHardware());    -    uint32_t flags =hw.getFlag