MySql更新优化策略_MsSql

模拟场景一:

给数据库中的一张表的结构调整,添加几个字段,后面对之前的数据进行刷新,刷新的内容是对其中的一个已有字段url进行匹配,然后更新新加的字段type和typeid。

后来就写了个shell脚本来刷数据,结果运行shell脚本后我就懵了,怎么这么慢~~~

情景再现

复制代码 代码如下:

CREATE TABLE `fuckSpeed` (
  `uin` bigint(20) unsigned NOT NULL DEFAULT 0,
  `id` int(11) unsigned NOT NULL DEFAULT 0,
  `url` varchar(255) NOT NULL DEFAULT '',
  `type` int(11) unsigned NOT NULL DEFAULT 0,
  `typeid` varchar(64) NOT NULL DEFAULT '',
  ......
  KEY `uin_id` (`uin`,`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

表结构大概是上面这样的(省略了好多字段),表中只有一个联合索引uin_id,而我在更新的时候是下面的思路:

首先根据一个id范围获取到一定数量的数据

复制代码 代码如下:

select id,url from funkSpeed where id>=101 and id<=200;

遍历所有的数据,对每一条数据进行更新

#首先对数据进行处理,匹配获取type和typeid

复制代码 代码如下:

update fuckSpeed set type=[type],typeid=[typeid] where id=[id]

按照上面的思路搞了之后,发现更新特别的慢,平均每秒钟3~5个左右,我也是醉了,我看看要更新的数据,总共有32w+条,这样更新下来大概需要24h+,也就是1天还要多,额~~哭了,想想肯定是哪里出问题了。

发现问题
首先我想到的是是不是因为只有一个进程在更新,导致很慢,我启动了5个进程,将id分段了,就像下面这样

复制代码 代码如下:

./update_url.sh 0 10000 &
./update_url.sh 10000 20001 &
./update_url.sh 20001 30001 &
./update_url.sh 30002 40002 &
./update_url.sh 40003 50003 &

运行之后发现还是那样,速度没有提升多少,还是每秒钟更新3~5个左右,想想也是啊,时间不可能花费在插入数据之前的那些步骤(匹配、组装sql语句、。。。),应该是插入的时候有问题

再来看看我的sql语句

复制代码 代码如下:

select id,url from funkSpeed where id>=101 and id<=200;,

这里,试着在命令行执行了下,结果如下

复制代码 代码如下:

mysql> select id,url from funkSpeed where id>=0 and id<=200;
Empty set (0.18 sec)

竟然花了0.18秒,这个时候我猜恍然大悟,联合索引我没有使用到,联合索引生效的条件是——必须要有左边的字段,用explain验证下,果然是这样:

复制代码 代码如下:

mysql> explain id,url from funkSpeed where id>=0 and id<=200;
+-------------+------+---------------+------+---------+------+--------+-------------+
| table       | type | possible_keys | key  | key_len | ref  | rows   | Extra       |
+-------------+------+---------------+------+---------+------+--------+-------------+
| funkSpeed   | ALL  | NULL          | NULL | NULL    | NULL | 324746 | Using where |
+-------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.00 sec)

然后使用联合索引:

复制代码 代码如下:

mysql> select uin,id from funkSpeed where uin=10023 and id=162;
+------------+----------+
| uin        |   id     |
+------------+----------+
| 10023      | 162      |
+------------+----------+
1 row in set (0.00 sec)

mysql> explain select uin,id from funkSpeed where uin=10023 and id=162;
+-------------+------+---------------+----------+---------+-------------+------+-------------+
| table       | type | possible_keys | key      | key_len | ref         | rows | Extra       |
+-------------+------+---------------+----------+---------+-------------+------+-------------+
| funkSpeed   | ref  | uin_id        | uin_id   | 12      | const,const |    4 | Using index |
+-------------+------+---------------+----------+---------+-------------+------+-------------+
1 row in set (0.00 sec)

可以看到几乎是秒查,这个时候基本可以断定问题是出现在索引这个地方了

我select的时候次数比较少,每两个select之间id相差10000,所以这里可以忽略掉,而且这里没办法优化,除非在id上面添加索引。

问题发生在

复制代码 代码如下:

update fuckSpeed set type=[type],typeid=[typeid] where id=[id]

这里在更新的时候也是会用到查询的,我的mysql版本是5.5,不能explain update,不然肯定可以验证我所说的,这里要更新32w+条数据,每条数据都会去更新,每条数据0.2s左右,这太吓人了~~

解决问题
问题找到了,解决起来就容易多了~~

select的时候加了一个字段uin,改为下面这样

复制代码 代码如下:

select uin,id,url from funkSpeed where id>=101 and id<=200;

然后更新的时候使用

复制代码 代码如下:

update fuckSpeed set type=[type],typeid=[typeid] where uin=[uin] id=[id]

这样一来索引就是用上了。

三下五除二改好了代码,试着启动了一个进程,看看效果如何,果然,效果提升的不是一点点,平均30+次/s,这样大概3个小时左右就可以完成所有的更新了。

模拟场景二:
需求6个表 pid字段 写到对应的brand_id字段

问题sql背景:项目有6个表的要根据pid字段要写入对应的brand_id字段。但是这个其中有两个表是千万级别的。我的worker运行之后,线上的mysql主从同步立刻延迟了!运行了一个多小时之后,居然延迟到了40分钟,而且只更新了十几万行数据。问题sql如下:

复制代码 代码如下:

<!-- 根据商品id更新品牌id -->
    <update id="updateBrandIdByPid" parameterClass="com.jd.chat.worker.domain.param.UpdateBrandIdParam">
        UPDATE $tableName$
        SET brand_id = #newBrandId#
        WHERE pid = #pid#
            AND brand_id = 0
    </update>

项目组的mysql专家帮我分析了下,因为pid字段没有索引,mysql引擎要逐行扫描出与传入的pid值相等的列,然后更新数据,也就是要扫描完1000W+行磁盘数据才能执行完这个sql。更严重的是,这个千万级的表里面有多少个不同的pid,我就要执行多少个这样的sql。
同事给我的建议的根据id字段进行sql代码层次的纵向分表。每次更新1000行的数据,这样mysql引擎就不用每次在扫全表了,数据库压力是之前的万分之一。而且id作为主键,是有索引的有索引,有索引能大大优化查询性能,优化后的sql如下:

复制代码 代码如下:

<!-- 根据商品id更新品牌id -->
    <update id="updateBrandIdByPid" parameterClass="com.jd.chat.worker.domain.param.UpdateBrandIdParam">
        UPDATE $tableName$
        SET brand_id = #newBrandId#
        WHERE pid = #pid#
            AND brand_id = 0
            AND id BETWEEN #startNum# AND #endNum#
    </update>

仅仅用了id限区间的语句,将一个千万级的大表代码层次上进行纵向切割。重新上线worker后,mysql主从没有任何延迟!而且经过监视,短短10分钟就更新了十几万数据,效率是之前的6倍!更重要的是数据库负载均衡,应用健康运行。

以上通过两个问题模拟场景再现分析MySql更新优化策略,希望对大家在数据库方面有所帮助。

时间: 2024-09-21 08:00:24

MySql更新优化策略_MsSql的相关文章

MySql更新优化策略

模拟场景一: 给数据库中的一张表的结构调整,添加几个字段,后面对之前的数据进行刷新,刷新的内容是对其中的一个已有字段url进行匹配,然后更新新加的字段type和typeid. 后来就写了个shell脚本来刷数据,结果运行shell脚本后我就懵了,怎么这么慢~~~ 情景再现 复制代码 代码如下: CREATE TABLE `fuckSpeed` (   `uin` bigint(20) unsigned NOT NULL DEFAULT 0,   `id` int(11) unsigned NOT

MYSQL更新优化实录_Mysql

引言 今天(August 5, 2015 5:34 PM)在给数据库中一张表的结构做一次调整,添加了几个字段,后面对之前的数据进行刷新,刷新的内容是:对其中的一个已有字段url进行匹配,然后更新新加的字段type和typeid.后来就写了个shell脚本来刷数据,结果运行shell脚本后我就懵了,怎么这么慢~~~ 情景再现 CREATE TABLE `fuckSpeed` ( `uin` bigint(20) unsigned NOT NULL DEFAULT 0, `id` int(11) u

mysql 同一版本,同样的库,同样的参数设置,却不同的优化策略是为什么?

问题描述 如题:mysql 同一版本,同样的库,同样的参数设置,却不同的优化策略是为什么? 同一句sql,在247的服务器上,正常的解析,使用正常索引,小表驱动大表, 在181的服务器上,不能正常的解析,没使用索引,大表驱动小表. 问题补充:yanq12 写道 解决方案 引用关键的是他有时候是按照大表驱动小表的解析方式,有时候是按照小表驱动大表的解析方式,来解析这个应该是优化器的问题吧,估计是大表驱动小表和小表驱动大表效率差不多....至于没使用索引的话,可能是因为优化器认为全表扫描效率比索引高

解开发者之痛:中国移动MySQL数据库优化最佳实践

 章颖数据研发工程师 现任中国移动杭州研发中心数据研发工程师,擅长MySQL故障诊断,性能调优,MySQL高可用技术,曾任中国电信综合平台开发运营中心DBA   开源数据库MySQL比较容易碰到性能瓶颈,为此经常需要对MySQL数据库进行优化,而MySQL数据库优化需要运维DBA与相关开发共同参与,其中MySQL参数及服务器配置优化主要由运维DBA完成,开发则需要从数据类型优化,索引优化,SQL优化三个角度考虑MySQL数据库优化问题,本次分享将从开发角度,看如何实现MySQL数据库优化. 本次

MySQL · 性能优化 · SQL错误用法详解

前言 MySQL在2016年仍然保持强劲的数据库流行度增长趋势.越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来.但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况.阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题.现将<ApsaraDB专家诊断报告>中出现的部分常见SQL问题总结如下,供大家参考. 常见SQL错误用法 1. LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如

MySQL性能优化总结(转)

一.MySQL的主要适用场景 1.Web网站系统 2.日志记录系统 3.数据仓库系统 4.嵌入式系统 二.MySQL架构图:   三.MySQL存储引擎概述 1)MyISAM存储引擎 MyISAM存储引擎的表在数据库中,每一个表都被存放为三个以表名命名的物理文件.首先肯定会有任何存储引擎都不可缺少的存放表结构定义信息的.frm文件,另外还有.MYD和.MYI文件,分别存放了表的数据(.MYD)和索引数据(.MYI).每个表都有且仅有这样三个文件做为MyISAM存储类型的表的存储,也就是说不管这个

MySQL · 性能优化 · MySQL常见SQL错误用法

前言 MySQL在2016年仍然保持强劲的数据库流行度增长趋势.越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来.但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况.阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题.现将<ApsaraDB专家诊断报告>中出现的部分常见SQL问题总结如下,供大家参考. 常见SQL错误用法 1. LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如

详解MySQL性能优化(一)_Mysql

一.MySQL的主要适用场景1.Web网站系统 2.日志记录系统 3.数据仓库系统 4.嵌入式系统 二.MySQL架构图:   三.MySQL存储引擎概述 1)MyISAM存储引擎 MyISAM存储引擎的表在数据库中,每一个表都被存放为三个以表名命名的物理文件.首先肯定会有任何存储引擎都不可缺少的存放表结构定义信息的.frm文件,另外还有.MYD和.MYI文件,分别存放了表的数据(.MYD)和索引数据(.MYI).每个表都有且仅有这样三个文件做为MyISAM存储类型的表的存储,也就是说不管这个表

MySQL性能优化_Mysql

1. 简介 在Web应用程序体系架构中,数据持久层(通常是一个关系数据库)是关键的核心部分,它对系统的性能有非常重要的影响.MySQL是目前使用最多的开源数据库,但是MySQL数据库的默认设置性能非常的差,仅仅是一个玩具数据库.因此在产品中使用MySQL数据库必须进行必要的优化.优化是一个复杂的任务,本文描述MySQL相关的数据库设计和查询优化,服务器端优化,存储引擎优化. 2. 数据库设计和查询优化 在MySQL Server性能调优中,首先要考虑的就是Database Schema设计,这一