详解Java线程编程中的volatile关键字的作用_java

1.volatile关键字的两层语义

  一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:

  1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。

  2)禁止进行指令重排序。

  先看一段代码,假如线程1先执行,线程2后执行:

//线程1
boolean stop = false;
while(!stop){
  doSomething();
}

//线程2
stop = true;

   这段代码是很典型的一段代码,很多人在中断线程时可能都会采用这种标记办法。但是事实上,这段代码会完全运行正确么?即一定会将线程中断么?不一定,也许在大多数时候,这个代码能够把线程中断,但是也有可能会导致无法中断线程(虽然这个可能性很小,但是只要一旦发生这种情况就会造成死循环了)。

  下面解释一下这段代码为何有可能导致无法中断线程。在前面已经解释过,每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。

  那么当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。

  但是用volatile修饰之后就变得不一样了:

  第一:使用volatile关键字会强制将修改的值立即写入主存;

  第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);

  第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。

  那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。

  那么线程1读取到的就是最新的正确的值。

2.volatile的特性

当我们声明共享变量为volatile后,对这个变量的读/写将会很特别。理解volatile特性的一个好方法是:把对volatile变量的单个读/写,看成是使用同一个监视器锁对这些单个读/写操作做了同步。下面我们通过具体的示例来说明,请看下面的示例代码:

class VolatileFeaturesExample {
  volatile long vl = 0L; //使用volatile声明64位的long型变量

  public void set(long l) {
    vl = l;  //单个volatile变量的写
  }

  public void getAndIncrement () {
    vl++;  //复合(多个)volatile变量的读/写
  }

  public long get() {
    return vl;  //单个volatile变量的读
  }
}

假设有多个线程分别调用上面程序的三个方法,这个程序在语意上和下面程序等价:

class VolatileFeaturesExample {
  long vl = 0L;        // 64位的long型普通变量

  public synchronized void set(long l) {   //对单个的普通 变量的写用同一个监视器同步
    vl = l;
  }

  public void getAndIncrement () { //普通方法调用
    long temp = get();      //调用已同步的读方法
    temp += 1L;         //普通写操作
    set(temp);          //调用已同步的写方法
  }
  public synchronized long get() {
  //对单个的普通变量的读用同一个监视器同步
    return vl;
  }
}

如上面示例程序所示,对一个volatile变量的单个读/写操作,与对一个普通变量的读/写操作使用同一个监视器锁来同步,它们之间的执行效果相同。

监视器锁的happens-before规则保证释放监视器和获取监视器的两个线程之间的内存可见性,这意味着对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。

3.volatile写-读建立的happens before关系

上面讲的是volatile变量自身的特性,对程序员来说,volatile对线程的内存可见性的影响比volatile自身的特性更为重要,也更需要我们去关注。

从JSR-133开始,volatile变量的写-读可以实现线程之间的通信。

从内存语义的角度来说,volatile与监视器锁有相同的效果:volatile写和监视器的释放有相同的内存语义;volatile读与监视器的获取有相同的内存语义。

请看下面使用volatile变量的示例代码:

class VolatileExample {
  int a = 0;
  volatile boolean flag = false;

  public void writer() {
    a = 1;          //1
    flag = true;        //2
  }

  public void reader() {
    if (flag) {        //3
      int i = a;      //4
      ……
    }
  }
}

假设线程A执行writer()方法之后,线程B执行reader()方法。根据happens before规则,这个过程建立的happens before 关系可以分为两类:

根据程序次序规则,1 happens before 2; 3 happens before 4。
根据volatile规则,2 happens before 3。
根据happens before 的传递性规则,1 happens before 4。
上述happens before 关系的图形化表现形式如下:

在上图中,每一个箭头链接的两个节点,代表了一个happens before 关系。黑色箭头表示程序顺序规则;橙色箭头表示volatile规则;蓝色箭头表示组合这些规则后提供的happens before保证。

这里A线程写一个volatile变量后,B线程读同一个volatile变量。A线程在写volatile变量之前所有可见的共享变量,在B线程读同一个volatile变量后,将立即变得对B线程可见。

4.volatile写-读的内存语义

volatile写的内存语义如下:

当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存。
以上面示例程序VolatileExample为例,假设线程A首先执行writer()方法,随后线程B执行reader()方法,初始时两个线程的本地内存中的flag和a都是初始状态。下图是线程A执行volatile写后,共享变量的状态示意图:

如上图所示,线程A在写flag变量后,本地内存A中被线程A更新过的两个共享变量的值被刷新到主内存中。此时,本地内存A和主内存中的共享变量的值是一致的。

volatile读的内存语义如下:

当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量。
下面是线程B读同一个volatile变量后,共享变量的状态示意图:

如上图所示,在读flag变量后,本地内存B已经被置为无效。此时,线程B必须从主内存中读取共享变量。线程B的读取操作将导致本地内存B与主内存中的共享变量的值也变成一致的了。

如果我们把volatile写和volatile读这两个步骤综合起来看的话,在读线程B读一个volatile变量后,写线程A在写这个volatile变量之前所有可见的共享变量的值都将立即变得对读线程B可见。

下面对volatile写和volatile读的内存语义做个总结:

线程A写一个volatile变量,实质上是线程A向接下来将要读这个volatile变量的某个线程发出了(其对共享变量所在修改的)消息。
线程B读一个volatile变量,实质上是线程B接收了之前某个线程发出的(在写这个volatile变量之前对共享变量所做修改的)消息。
线程A写一个volatile变量,随后线程B读这个volatile变量,这个过程实质上是线程A通过主内存向线程B发送消息。

5.volatile保证原子性吗?

从上面知道volatile关键字保证了操作的可见性,但是volatile能保证对变量的操作是原子性吗?

  下面看一个例子:

public class Test {
  public volatile int inc = 0;

  public void increase() {
    inc++;
  }

  public static void main(String[] args) {
    final Test test = new Test();
    for(int i=0;i<10;i++){
      new Thread(){
        public void run() {
          for(int j=0;j<1000;j++)
            test.increase();
        };
      }.start();
    }

    while(Thread.activeCount()>1) //保证前面的线程都执行完
      Thread.yield();
    System.out.println(test.inc);
  }
}

   大家想一下这段程序的输出结果是多少?也许有些朋友认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。

  可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。

  这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。

  在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:

  假如某个时刻变量inc的值为10,

  线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;

  然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。

  然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。

  那么两个线程分别进行了一次自增操作后,inc只增加了1。

  解释到这里,可能有朋友会有疑问,不对啊,前面不是保证一个变量在修改volatile变量时,会让缓存行无效吗?然后其他线程去读就会读到新的值,对,这个没错。这个就是上面的happens-before规则中的volatile变量规则,但是要注意,线程1对变量进行读取操作之后,被阻塞了的话,并没有对inc值进行修改。然后虽然volatile能保证线程2对变量inc的值读取是从内存中读取的,但是线程1没有进行修改,所以线程2根本就不会看到修改的值。

  根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。

  把上面的代码改成以下任何一种都可以达到效果:

  采用synchronized:

public class Test {
  public int inc = 0;

  public synchronized void increase() {
    inc++;
  }

  public static void main(String[] args) {
    final Test test = new Test();
    for(int i=0;i<10;i++){
      new Thread(){
        public void run() {
          for(int j=0;j<1000;j++)
            test.increase();
        };
      }.start();
    }

    while(Thread.activeCount()>1) //保证前面的线程都执行完
      Thread.yield();
    System.out.println(test.inc);
  }
}

  采用Lock:

public class Test {
  public int inc = 0;
  Lock lock = new ReentrantLock();

  public void increase() {
    lock.lock();
    try {
      inc++;
    } finally{
      lock.unlock();
    }
  }

  public static void main(String[] args) {
    final Test test = new Test();
    for(int i=0;i<10;i++){
      new Thread(){
        public void run() {
          for(int j=0;j<1000;j++)
            test.increase();
        };
      }.start();
    }

    while(Thread.activeCount()>1) //保证前面的线程都执行完
      Thread.yield();
    System.out.println(test.inc);
  }
}

  采用AtomicInteger:

public class Test {
  public AtomicInteger inc = new AtomicInteger();

  public void increase() {
    inc.getAndIncrement();
  }

  public static void main(String[] args) {
    final Test test = new Test();
    for(int i=0;i<10;i++){
      new Thread(){
        public void run() {
          for(int j=0;j<1000;j++)
            test.increase();
        };
      }.start();
    }

    while(Thread.activeCount()>1) //保证前面的线程都执行完
      Thread.yield();
    System.out.println(test.inc);
  }
}

  在java 1.5的java.util.concurrent.atomic包下提供了一些原子操作类,即对基本数据类型的 自增(加1操作),自减(减1操作)、以及加法操作(加一个数),减法操作(减一个数)进行了封装,保证这些操作是原子性操作。atomic是利用CAS来实现原子性操作的(Compare And Swap),CAS实际上是利用处理器提供的CMPXCHG指令实现的,而处理器执行CMPXCHG指令是一个原子性操作。

6.volatile能保证有序性吗?

  在前面提到volatile关键字能禁止指令重排序,所以volatile能在一定程度上保证有序性。

  volatile关键字禁止指令重排序有两层意思:

  1)当程序执行到volatile变量的读操作或者写操作时,在其前面的操作的更改肯定全部已经进行,且结果已经对后面的操作可见;在其后面的操作肯定还没有进行;

  2)在进行指令优化时,不能将在对volatile变量访问的语句放在其后面执行,也不能把volatile变量后面的语句放到其前面执行。

  可能上面说的比较绕,举个简单的例子:

//x、y为非volatile变量
//flag为volatile变量

x = 2;    //语句1
y = 0;    //语句2
flag = true; //语句3
x = 4;     //语句4
y = -1;    //语句5

   由于flag变量为volatile变量,那么在进行指令重排序的过程的时候,不会将语句3放到语句1、语句2前面,也不会讲语句3放到语句4、语句5后面。但是要注意语句1和语句2的顺序、语句4和语句5的顺序是不作任何保证的。

  并且volatile关键字能保证,执行到语句3时,语句1和语句2必定是执行完毕了的,且语句1和语句2的执行结果对语句3、语句4、语句5是可见的。

  那么我们回到前面举的一个例子:

//线程1:
context = loadContext();  //语句1
inited = true;       //语句2

//线程2:
while(!inited ){
 sleep()
}
doSomethingwithconfig(context);

   前面举这个例子的时候,提到有可能语句2会在语句1之前执行,那么久可能导致context还没被初始化,而线程2中就使用未初始化的context去进行操作,导致程序出错。

  这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,因为当执行到语句2时,必定能保证context已经初始化完毕。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索java
volatile
java多线程编程 详解、volatile关键字、volatile关键字的作用、java volatile关键字、c volatile 关键字,以便于您获取更多的相关知识。

时间: 2024-10-01 21:05:26

详解Java线程编程中的volatile关键字的作用_java的相关文章

详解Java多线程编程中的线程同步方法_java

1.多线程的同步: 1.1.同步机制:在多线程中,可能有多个线程试图访问一个有限的资源,必须预防这种情况的发生.所以引入了同步机制:在线程使用一个资源时为其加锁,这样其他的线程便不能访问那个资源了,直到解锁后才可以访问. 1.2.共享成员变量的例子:成员变量与局部变量: 成员变量: 如果一个变量是成员变量,那么多个线程对同一个对象的成员变量进行操作,这多个线程是共享一个成员变量的. 局部变量: 如果一个变量是局部变量,那么多个线程对同一个对象进行操作,每个线程都会有一个该局部变量的拷贝.他们之间

详解Java设计模式编程中命令模式的项目结构实现_java

正论: 命令模式把一个请求或者操作封装到一个对象中.命令模式运行系统使用不同的请求把客户端参数化,对请求排队或者记录请求日志,可以提供命令的撤销和恢复功能. 通俗: 其实很好理解.命令模式,关心的就是命令(或者称为操作).打个比方.在一个公司里面,整个运作就像一个系统.某个boss发布了一个命令,中层领导接到这个命令,然后指派给具体负责这个员工.整个流程很清晰吧.有一个需求,如何将这个流程固定下来,形成一个系统.我们只要抓住了重点:命令.将它抽取出来,其他的都迎刃而解了.抽取出命令,封装成一个独

详解Java多线程编程中线程的启动、中断或终止操作_java

线程启动: 1.start() 和 run()的区别说明start() : 它的作用是启动一个新线程,新线程会执行相应的run()方法.start()不能被重复调用. run() : run()就和普通的成员方法一样,可以被重复调用.单独调用run()的话,会在当前线程中执行run(),而并不会启动新线程! 下面以代码来进行说明. class MyThread extends Thread{ public void run(){ ... } }; MyThread mythread = new

详解Java多线程编程中LockSupport类的线程阻塞用法_java

LockSupport是用来创建锁和其他同步类的基本线程阻塞原语. LockSupport中的park() 和 unpark() 的作用分别是阻塞线程和解除阻塞线程,而且park()和unpark()不会遇到"Thread.suspend 和 Thread.resume所可能引发的死锁"问题. 因为park() 和 unpark()有许可的存在:调用 park() 的线程和另一个试图将其 unpark() 的线程之间的竞争将保持活性. 基本用法LockSupport 很类似于二元信号量

详解Java多线程编程中CountDownLatch阻塞线程的方法_java

直译过来就是倒计数(CountDown)门闩(Latch).倒计数不用说,门闩的意思顾名思义就是阻止前进.在这里就是指 CountDownLatch.await() 方法在倒计数为0之前会阻塞当前线程. CountDownLatch是一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待. CountDownLatch 的作用和 Thread.join() 方法类似,可用于一组线程和另外一组线程的协作.例如,主线程在做一项工作之前需要一系列的准备工作,只有这些准备工

详解Java面向对象编程中方法的使用_java

一个 Java 方法是为了执行某个操作的一些语句的组合.举个例子来说,当你调用 System.out.println 方法时,系统实际上会执行很多语句才能在控制台上输出信息. 现在你将学习怎么创建你自己的方法,他们可以有返回值也可以没有返回值,可以有参数,也可以没有参数,重载方法要使用相同的方法名称,并在程序设计中利用抽象的方法. 创建方法我们用下面的例子来解释方法的语法: public static int funcName(int a, int b) { // body } 在这里 publ

详解Java设计模式编程中的访问者模式_java

定义:封装某些作用于某种数据结构中各元素的操作,它可以在不改变数据结构的前提下定义作用于这些元素的新的操作.类型:行为类模式类图: 例子:例如,思考一下添加不同类型商品的购物车,当点击结算的时候,它计算出所有不同商品需付的费用.现在,计算逻辑即为计算这些不同类型商品的价格.或者说通过访问者模式我们把此逻辑转移到了另外一个类上面.让我们实现这个访问者模式的例子. 为了实现访问者模式,最先需要做的是创建能够被添加到购物车中代表不同类型商品(itemElement)的类. ItemElement.ja

详解Java设计模式编程中的策略模式_java

定义:定义一组算法,将每个算法都封装起来,并且使他们之间可以互换.类型:行为类模式类图: 策略模式是对算法的封装,把一系列的算法分别封装到对应的类中,并且这些类实现相同的接口,相互之间可以替换.在前面说过的行为类模式中,有一种模式也是关注对算法的封装--模版方法模式,对照类图可以看到,策略模式与模版方法模式的区别仅仅是多了一个单独的封装类Context,它与模版方法模式的区别在于:在模版方法模式中,调用算法的主体在抽象的父类中,而在策略模式中,调用算法的主体则是封装到了封装类Context中,抽

详解Java设计模式编程中的中介者模式_java

定义:用一个中介者对象封装一系列的对象交互,中介者使各对象不需要显示地相互作用,从而使耦合松散,而且可以独立地改变它们之间的交互. 类型:行为类模式 类图: 中介者模式的结构       中介者模式又称为调停者模式,从类图中看,共分为3部分:  抽象中介者:定义好同事类对象到中介者对象的接口,用于各个同事类之间的通信.一般包括一个或几个抽象的事件方法,并由子类去实现. 中介者实现类:从抽象中介者继承而来,实现抽象中介者中定义的事件方法.从一个同事类接收消息,然后通过消息影响其他同时类. 同事类: