[LeetCode] Sliding Window Maximum

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

Window position                Max
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7

Therefore, return the max sliding window as [3,3,5,5,6,7].

Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array’s size for non-empty array.

Follow up:
Could you solve it in linear time?

Hint:

  1. How about using a data structure such as deque (double-ended queue)?
  2. The queue size need not be the same as the window’s size.
  3. Remove redundant elements and the queue should store only elements that need to be considered.

解题思路

依据提示,借助一个deque来实现,deque里面存储可能的最大值的下标。遍历数组,若当前元素大于队列尾部元素,则移除尾部元素,然后添加当前元素的下标。提取deque中的值时,需要考虑deque首部的值是否在当前元素的窗口内。

实现代码

// Runtime: 31 ms
public class Solution {
    private Deque<Integer> deque = new LinkedList<Integer>();
    public int[] maxSlidingWindow(int[] nums, int k) {
        if (k == 0) {
            return new int[0];
        }
        int[] res = new int[nums.length - k + 1];
        for (int i = 0; i < nums.length; i++) {
            while (!deque.isEmpty() && nums[i] >= nums[deque.peekLast()]) {
                deque.pollLast();
            }
            deque.offerLast(i);
            while (deque.peekFirst() < i - k + 1) {
                deque.pollFirst();
            }
            if (i >= k - 1) {
                res[i - k + 1] = nums[deque.peekFirst()];
            }
        }

        return res;
    }
}
时间: 2024-10-27 22:30:36

[LeetCode] Sliding Window Maximum的相关文章

[LeetCode]239.Sliding Window Maximum

题目 Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. For example, Given

【POJ 2823 Sliding Window】 单调队列

题目大意:给n个数,一个长度为k(k<n)的闭区间从0滑动到n,求滑动中区间的最大值序列和最小值序列. 最大值和最小值是类似的,在此以最大值为例分析. 数据结构要求:能保存最多k个元素,快速取得最大值,更新时删去"过期"元素和"不再有希望"的元素,安放新元素. 单调队列的基本概念百度百科讲得比较清楚了:http://baike.baidu.com/view/3771451.htm   我的大致思路是: 1. 每个元素存储为结构体,包含它的秩和值.维护最大长度为

LeetCode All in One 题目讲解汇总(持续更新中...)

终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 如果各位看官们,大神们发现了任何错误,或是代码无法通过OJ,或是有更好的解法,或是有任何疑问,意见和建议的话,请一定要在对应的帖子下面评论区留言告知博主啊,多谢多谢,祝大家刷得愉快,刷得精彩,刷出美好未来- 博主制作了一款iOS的应用"Leetcode Meet Me",里面有Leetcode上所有的题目,并且贴上了博主的解法,随时随地都能

Flink 原理与实现:Window 机制

Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理.而窗口(window)就是从 Streaming 到 Batch 的一个桥梁.Flink 提供了非常完善的窗口机制,这是我认为的 Flink 最大的亮点之一(其他的亮点包括消息乱序处理,和 checkpoint 机制).本文我们将介绍流式处理中的窗口概念,介绍 Flink 内建的一些窗口和 Window API,最后讨论下窗口在底层是如何实现的. 什么是 Win

Siddhi CEP Window机制

https://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0#SiddhiQLGuide3.0-Window https://docs.wso2.com/display/CEP400/Inbuilt+Windows#InbuiltWindows http://wso2.com/library/articles/2013/06/understanding-siddhi-powers-wso2-cep-2x/ https://docs.wso2.co

[LeetCode]--3. Longest Substring Without Repeating Characters

Given a string, find the length of the longest substring without repeating characters. Examples: Given "abcabcbb", the answer is "abc", which the length is 3. Given "bbbbb", the answer is "b", with the length of 1.

Spark修炼之道(进阶篇)——Spark入门到精通:第十二节 Spark Streaming—— DStream Window操作

作者:周志湖 微信号:zhouzhihubeyond 本节主要内容 Window Operation 入门案例 1. Window Operation Spark Streaming提供窗口操作(Window Operation),如下图所示: 上图中,红色实线表示窗口当前的滑动位置,虚线表示前一次窗口位置,窗口每滑动一次,落在该窗口中的RDD被一起同时处理,生成一个窗口DStream(windowed DStream),窗口操作需要设置两个参数: (1)窗口长度(window length),

Partitioning in SQL Server 2008

By Muhammad Shujaat Siddiqi 原文地址:http://www.sqlservercentral.com/articles/partition/64740/ Introduction Why don't you partition your table if you have millions of rows and get complaints about the degradation of performance? This is the question I as

流计算风云再起 - PostgreSQL携PipelineDB力挺IoT(物联网), 大幅提升性能和开发效率

标签 PostgreSQL , pipelinedb , 流计算 , patch , bug , libcheck , zeromq , kafka , kinesis , IoT , 物联网 背景 pipelinedb是基于PostgreSQL的一个流式计算数据库,纯C代码,效率极高(32c机器,单机日处理流水达到了250.56亿条).同时它具备了PostgreSQL强大的功能基础,正在掀起一场流计算数据库制霸的腥风血雨. 在物联网(IoT)有非常广泛的应用场景,越来越多的用户开始从其他的流计