LDD3学习笔记(9):高级字符驱动操作

 1、ioctl接口

ioctl 驱动方法有和用户空间版本不同的原型:

int (*ioctl) (struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg);

2、阻塞I/O

阻塞进程,使它进入睡眠直到请求可继续。

当一个进程被置为睡眠,它被标识为处于一个特殊的状态并且从调度器的运行队列中去除,直到发生某些事情改变了那个状态。一个睡着的进程将不被任何CPU调度,因此不会运行,一个睡着的进程已被搁置到系统的一边,等待以后发生事件。

3、参考和总结

#include <linux/ioctl.h>

声明用来定义 ioctl 命令的宏定义. 当前被 <linux/fs.h> 包含.

_IOC_NRBITS

_IOC_TYPEBITS

_IOC_SIZEBITS

_IOC_DIRBITS 

ioctl 命令的不同位段所使用的位数. 还有 4 个宏来指定 MASK 和 4 个指定 SHIFT, 但是它们

主要是给内部使用. _IOC_SIZEBIT 是一个要检查的重要的值, 因为它跨体系改变.

_IOC_NONE

_IOC_READ

_IOC_WRITE 

"方向"位段可能的值. "read" 和 "write" 是不同的位并且可相或来指定 read/write. 这些值是基

于 0 的.

_IOC(dir,type,nr,size)

_IO(type,nr)

_IOR(type,nr,size)

_IOW(type,nr,size)

_IOWR(type,nr,size)

用来创建 ioclt 命令的宏定义.

_IOC_DIR(nr)

_IOC_TYPE(nr)

_IOC_NR(nr)

_IOC_SIZE(nr)

用来解码一个命令的宏定义. 特别地, _IOC_TYPE(nr) 是 _IOC_READ 和 _IOC_WRITE 的 

OR 结合.

#include <asm/uaccess.h>

int access_ok(int type, const void *addr, unsigned long size);

检查一个用户空间的指针是可用的. access_ok 返回一个非零值, 如果应当允许存取.

VERIFY_READ 

VERIFY_WRITE 

access_ok 中 type 参数的可能取值. VERIFY_WRITE 是 VERIFY_READ 的超集.

#include <asm/uaccess.h>

int put_user(datum,ptr);

int get_user(local,ptr);

int __put_user(datum,ptr);

int __get_user(local,ptr);

用来存储或获取一个数据到或从用户空间的宏. 传送的字节数依赖 sizeof(*ptr). 常规的版本

调用 access_ok , 而常规版本( __put_user 和 __get_user ) 假定 access_ok 已经被调用了.

#include <linux/capability.h>

定义各种 CAP_ 符号, 描述一个用户空间进程可有的能力.

int capable(int capability);

返回非零值如果进程有给定的能力.

#include <linux/wait.h>

typedef struct { /* ... */ } wait_queue_head_t;

void init_waitqueue_head(wait_queue_head_t *queue);

DECLARE_WAIT_QUEUE_HEAD(queue);

Linux 等待队列的定义类型. 一个 wait_queue_head_t 必须被明确在运行时使用 

init_waitqueue_head 或者编译时使用 DEVLARE_WAIT_QUEUE_HEAD 进行初始化.

void wait_event(wait_queue_head_t q, int condition);

int wait_event_interruptible(wait_queue_head_t q, int condition);

int wait_event_timeout(wait_queue_head_t q, int condition, int time);

int wait_event_interruptible_timeout(wait_queue_head_t q, int condition,int time);

使进程在给定队列上睡眠, 直到给定条件值为真值.

void wake_up(struct wait_queue **q);

void wake_up_interruptible(struct wait_queue **q);

void wake_up_nr(struct wait_queue **q, int nr);

void wake_up_interruptible_nr(struct wait_queue **q, int nr);

void wake_up_all(struct wait_queue **q);

void wake_up_interruptible_all(struct wait_queue **q);

void wake_up_interruptible_sync(struct wait_queue **q);

唤醒在队列 q 上睡眠的进程. _interruptible 的形式只唤醒可中断的进程. 正常地, 只有一个互斥等待者被唤醒, 但是这个行为可被 _nr 或者 _all 形式所改变. _sync 版本在返回之前不重新调度 CPU.

#include <linux/sched.h>

set_current_state(int state);

设置当前进程的执行状态. TASK_RUNNING 意味着它已经运行, 而睡眠状态是 

TASK_INTERRUPTIBLE 和 TASK_UNINTERRUPTIBLE.

void schedule(void);

选择一个可运行的进程从运行队列中. 被选中的进程可是当前进程或者另外一个.

typedef struct { /* ... */ } wait_queue_t;

init_waitqueue_entry(wait_queue_t *entry, struct task_struct *task);

wait_queue_t 类型用来放置一个进程到一个等待队列.

void prepare_to_wait(wait_queue_head_t *queue, wait_queue_t *wait, int state);

void prepare_to_wait_exclusive(wait_queue_head_t *queue, wait_queue_t *wait, int state);

void finish_wait(wait_queue_head_t *queue, wait_queue_t *wait);

帮忙函数, 可用来编码一个手工睡眠.

void sleep_on(wiat_queue_head_t *queue);

void interruptible_sleep_on(wiat_queue_head_t *queue);

老式的不推荐的函数, 它们无条件地使当前进程睡眠.

#include <linux/poll.h>

void poll_wait(struct file *filp, wait_queue_head_t *q, poll_table *p);

将当前进程放入一个等待队列, 不立刻调度. 它被设计来被设备驱动的 poll 方法使用.

int fasync_helper(struct inode *inode, struct file *filp, int mode, struct fasync_struct **fa);

一个"帮忙者", 来实现 fasync 设备方法. mode 参数是传递给方法的相同的值, 而 fa 指针指向一个设备特定的 fasync_struct *.

void kill_fasync(struct fasync_struct *fa, int sig, int band);

如果这个驱动支持异步通知, 这个函数可用来发送一个信号到登记在 fa 中的进程.

int nonseekable_open(struct inode *inode, struct file *filp);

loff_t no_llseek(struct file *file, loff_t offset, int whence);

nonseekable_open 应当在任何不支持移位的设备的 open 方法中被调用. 这样的设备应当使

用 no_llseek 作为它们的 llseek 方法.

时间: 2024-09-15 21:58:39

LDD3学习笔记(9):高级字符驱动操作的相关文章

Linux 高级字符驱动操作 iotcl及阻塞IO

Linux设备驱动 高级字符驱动操作之iotcl 大部分驱动除了提供对设备的读写操作外,还需要提供对硬件控制的接口,比如查询一个framebuffer设备能提供多大的分辨率,读取一个RTC设备的时间,设置一个gpio的高低电平等等.而这些对硬件操作能力的实现一般都是通过ioctl方法来实现的 1. 原型介绍 Ioctl在用户空间的原型为: int ioctl(int fd, unsigned long cmd, ...); 原型中的点不表示一个变数目的参数, 而是一个 单个可选的参数, 传统上标

LDD3学习笔记(3):字符驱动1

1.scull( Simple Character Utility for Loading  Localities)的设计 Scull是一个字符驱动,它操作一块内存区域,就好像它是一个设备,因此在以下的介绍中我们可以互换的使用设备和scull操作的内存区. 编写驱动的第一步是定义驱动将要提供给用户的功能. 模块实现的每种设备都被引用为一种类型. Scull源码实现: scull0到scull3四个设备,每个都由一个全局永久的内存区组成,全局表示如果设备被多次打开设备中含有的数据将由所有打开它的文

LDD3学习笔记(4):字符驱动2

1.重要的数据结构 注册设备编号仅仅是驱动代码需要完成的任务之一,还有很多基础性的驱动操作需要驱动代码来完成,这里有3个重要的内核数据结构需要了解一下分别是:file_operations.file.inode. 1.1.文件操作 File_operation结构的功能是建立一个字符驱动与设备编号的连接.通常结构中的每个成员必须指向驱动中的函数,这些函数实现一个特别的操作,对于不支持的操作置为NULL. __user这种注解是一种文档形式,表明一个指针是一个不能被直接解除引用的用户空间地址,对于

LDD3学习笔记(6):字符驱动4

  1.快速参考 本章介绍了下面符号和头文件. struct file_operations 和 struct file 中的成员的列表这里不重复了. #include <linux/types.h> dev_t  dev_t 是用来在内核里代表设备号的类型. int MAJOR(dev_t dev); int MINOR(dev_t dev); 从设备编号中抽取主次编号的宏. dev_t MKDEV(unsigned int major, unsigned int minor); 从主次编号

LDD3学习笔记(5):字符驱动3

  1.字符设备注册 在运行时获得一个独立的cdev结构的代码: Struct cdev* my_cdev=cdev_alloc(); My_codev->ops=&my_fops; 将cdev结构嵌入自己设备特定的结构: Void cdev_init(struct cdev* cdev , struct file_operations* fops); Cdev结构建立后,告诉内核: Int cdev_add(struct cdev*dev ,dev_t num,unsigned int c

LDD3学习笔记(1):设备驱动简介

 1.几乎每个系统操作都被映射到具体的物理设备上,而任何设备的控制操作都由特定于要寻址的相关代码来进行,这些代码成为设备驱动. 2.linux可以在运行时扩展由内核提供的特性,既可以在系统运行时增加内核的功能(也可以删除). 3.每块可以在运行时添加到内核的代码称为一个模块,每个模块由目标代码组成(既功能的实现). 4.linux将设备分为三种基本类型:字符设备.块设备.网络设备.典型的字符设备如:/dev/tty1(串口),块设备如:/dev/sda(磁盘),网络设备如:eth0(网卡),在这

LDD3学习笔记(20):网络驱动

  #include <linux/netdevice.h> 定义 struct net_device 和 struct net_device_stats 的头文件, 包含了几个其他网络驱动需要的头 文件. struct net_device *alloc_netdev(int sizeof_priv, char *name, void (*setup)(struct net_device *); struct net_device *alloc_etherdev(int sizeof_pri

LDD3学习笔记(21):tty驱动

  #include <linux/tty_driver.h> 头文件, 包含 struct tty_driver 的定义和声明一些在这个结构中的不同的标志. #include <linux/tty.h> 头文件, 包含 tty_struct 结构的定义和几个不同的宏定义来易于存取 struct termios 的成员的单个值. 它还含有 tty 驱动核心的函数声明. #include <linux/tty_flip.h> 头文件, 包含几个 tty flip 缓冲内联

Linux设备驱动程序学习 高级字符驱动程序操作[阻塞型I/O和非阻塞I/O]【转】

转自:http://blog.csdn.net/jacobywu/article/details/7475432 阻塞型I/O和非阻塞I/O 阻塞:休眠 非阻塞:异步通知 一 休眠 安全地进入休眠的两条规则: (1) 永远不要在原子上下文中进入休眠,即当驱动在持有一个自旋锁.seqlock或者 RCU锁时不能睡眠:关闭中断也不能睡眠.持有一个信号量时休眠是合法的,但你应当仔细查看代码:如果代码在持有一个信号量时睡眠,任何其他的等待这个信号量的线程也会休眠.因此发生在持有信号量时的休眠必须短暂,而