算法题:UVA 11125

Problem H

Arrange Some Marbles

Input: Standard Input

Output: Standard Output

you are given some marbles of n different color. You have to arrange these marbles in a line. The marbles adjacent with same color form a group. In each group there can be 1 to 3 marble. Adjacent group should have different color and size. The first and last group also should have different color and size. You are given the number of each of these n marbles. You have count the number of ways you can arrange them in a line maintaining the above constraints. For example you have 4 red marbles and 4 green marbles. You can arrange them in the following 8 way  - GGGRRGRR, GGRGGRRR, GGRRRGGR, GRRGGGRR, RGGRRRGG, RRGGGRRG, RRGRRGGG, RRRGGRGG.

Input

Input contains multiple number of test cases. The first line contain the number of test cases t (t<3000). Each of the next line contains one test case. Each test case starts with n (1 ≤ n ≤ 4) the number of different color. Next contains n integers. The i'th integer denotes the number of marble of color i. The number of marbles of any color is within the range 0..7 (inclusive). The color of the marbles arenumbered from 1 to n.

Output

For each test case output contains one integer in one line denoting the number of ways you can arrange the marbles.

Sample Input                          Output for Sample Input

6

2 3 3

2 4 4

2 6 6

3 3 4 5

3 4 5 6

4 2 3 4 5

0

8

12

174

1234

1440

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索input
, color
, number
, group
, The
have
11125吧、fulu、尾行4:虚拟追踪者、fl11125、雯雅婷,以便于您获取更多的相关知识。

时间: 2024-11-05 19:42:46

算法题:UVA 11125的相关文章

算法题之UVA 763

Fibinary Numbers The standard interpretation of the binary number 1010 is 8 + 2 = 10. An alternate way to view the sequence ``1010'' is to use Fibonacci numbers as bases instead of powers of two. For this problem, the terms of the Fibonacci sequence

算法题:uva 10318

题目链接: 首先,可以确定每个格子只能选一次,因为选任何大于0的偶数次,等于没有效果 一样. 然后,就可以把这题理解成从r*c的矩阵中选择一些格子进行"点亮"操作,使得最终所 有格子都是"亮"的状态.那么,每个格子要么有点亮操作,要么没有,总共复杂度为2^25,显然必须 进行减枝. 假设从第一行第一列开始,从左往右,从上往下一次依次选择,对于当前所在位置( x, y),它已经不能影响到x-2以前的行数了,所以当到x行时,如果第x-2行没有全部点亮,则进行减枝 . 此

算法题:uva 1330

题目链接: http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Itemid=8&category=460&page=show_problem&problem=4076 以前做过一道一维的,这题只是变成了二维的,其他方法都一样.HDU 1506  Largest Rectangle in a Histogram   题解 代码1: #include<cstdio> #include<cs

一个算法题,求答案啊啊啊啊

问题描述 一个算法题,求答案啊啊啊啊 白班 09:00-18:00 通班 09:00-21:00 每个人每个月通班数量必须等于早中班和中晚班数量之和 早中班 09:00-15:00 中晚班 15:00-21:00 假设:每月按照30计算. 排班规则: 1.每个人每个月固定休息6天连续上班天数不超过7天. 2.每天各班次上班的人数最低需求:8个白班5个通班1个早中班,2个中晚班. 3.每个月每个人的通班天数安排不超过8天. 4.每个人每个月早中班和中晚班的天数之和需要与通班天数相等. 5.每月最多

算法题:把阿拉伯金额转化为汉字表示的金额

n年没写算法题了,今天用了20分钟写了一个,要求如题,感觉算法有所退步,老了 using System; using System.Text; namespace money { class Program { static void Main(string[] args) { StringBuilder sb=new StringBuilder(); var strValue = Console.ReadLine(); var strlist = strValue.Split('.'); if

算法题:poj 2541 Binary Witch(KMP水过,逆序转换)

链接: http://poj.org/problem?id=2541 分析与总结: 做这题估算了下复杂度,觉得无论KMP再怎么快,这题暴力也肯定要超时的. 想了很久也没想出个好办法,于是决定暴力之,但是TLE了....于是就放了几天.之后看了下discuss ,这题的正解应该是状态压缩dp,不过目前我还不懂,跪了. 之后百度发现也可以用KMP水过,虽然是因为数据水才过的,不过这种思路很巧妙,值得借鉴! 直接暴力是枚举字符串的后面13个的字母,然后再用KMP匹配,这样的话,就绪要枚举多次,分别是

算法题:HDU 2594 Simpsons’ Hidden Talents(KMP)

链接: http://acm.hdu.edu.cn/showproblem.php?pid=2594 题目大意: 给两个字符串s1和s2, 求出是s1的前缀并且是s2的后缀的最长的字符串. 分析与总结: 真正理解好KMP算法,这题就是水题. 首先求出s1的失配函数,然后在s2中 寻找s1字符串. 在寻找字符串过程中,会有一个状态值j,这个值表示的是当前在s2中已经匹配 了多少个s1的字符. 所以,全部匹配完后,最后j的值就是以s2的最后一个字符结尾,和s1的前缀相匹 配的最长字符串.也就是所求的

求一个面试算法题答案。

问题描述 求一个面试算法题答案. 已知函数f()以相同的概率返回0或者1,求一个函数g()以相同的概率返回0-7之间的任意一个数字. 解决方案 其实这个题不难,可以考虑用2进制的方式来做.g(){return 4*f()+2*f()+f();} 希望能帮到你. 解决方案二: #includeint g(){srand(time(NULL));ret = rand()%8;return ret;}

经典算法题每日演练——第七题 KMP算法

原文:经典算法题每日演练--第七题 KMP算法       在大学的时候,应该在数据结构里面都看过kmp算法吧,不知道有多少老师对该算法是一笔带过的,至少我们以前是的, 确实kmp算法还是有点饶人的,如果说红黑树是变态级的,那么kmp算法比红黑树还要变态,很抱歉,每次打kmp的时候,输 入法总是提示"看毛片"三个字,嘿嘿,就叫"看毛片算法"吧. 一:BF算法      如果让你写字符串的模式匹配,你可能会很快的写出朴素的bf算法,至少问题是解决了,我想大家很清楚的知

java算法题,公司的笔试题

问题描述 java算法题,公司的笔试题 suppose you have N cakes, N is an interger>0 // at each time, you can either eat 1 cake, or 2 cakes or 3 cakes // PROBLEM: How many ways can you eat all N cakes // for example, N = 4, (1,2,1) and (1,1,2) are considered to be diffe