深入理解Java内存模型(三) 顺序一致性

数据竞争与顺序一致性保证

当程序未正确同步时,就会存在数据竞争。java内存模型规范对数 据竞争的定义如下:

在一个线程中写一个变量,

在另一个线程读同一个变量,

而且写和读没有通过同步来排序。

当代码中包含数据竞争时,程序的执行往往产生违反直觉的结果(前一章的示例正是如此)。如果一 个多线程程序能正确同步,这个程序将是一个没有数据竞争的程序。

JMM对正确同步的多线程程序 的内存一致性做了如下保证:

如果程序是正确同步的,程序的执行将具有顺序一致性(sequentially consistent)--即程序的执行 结果与该程序在顺序一致性内存模型中的执行结果相同(马上我们将会看到,这对于程序员来说是一个极 强的保证)。这里的同步是指广义上的同步,包括对常用同步原语(lock,volatile和final)的正确使 用。

顺序一致性内存模型

顺序一致性内存模型是一个被计算机科学家理想化了的理论参考模型,它 为程序员提供了极强的内存可见性保证。顺序一致性内存模型有两大特性:

一个线程中的所有操作必须按照程序的顺序来执行。

(不管程序是否同步)所有线程都只能看到一个单一的操作执行顺序。在顺序一致性内存模型中,每 个操作都必须原子执行且立刻对所有线程可见。

顺序一致性内存模型为程序员提供的视图如下:

在概念上,顺序一致性模型有一个单一的全局内存,这个内存通过一个左右摆动的开关可以连 接到任意一个线程。同时,每一个线程必须按程序的顺序来执行内存读/写操作。从上图我们可以看出, 在任意时间点最多只能有一个线程可以连接到内存。当多个线程并发执行时,图中的开关装置能把所有线 程的所有内存读/写操作串行化。

为了更好的理解,下面我们通过两个示意图来对顺序一致性模型 的特性做进一步的说明。

假设有两个线程A和B并发执行。其中A线程有三个操作,它们在程序中的 顺序是:A1->A2->A3。B线程也有三个操作,它们在程序中的顺序是:B1->B2->B3。

假设这两个线程使用监视器来正确同步:A线程的三个操作执行后释放监视器,随后B线程获取同一个监视 器。那么程序在顺序一致性模型中的执行效果将如下图所示:

现在我们再假设这两个线程没有做同步,下面是这个未同步程序在顺序一致性模型中的执行示意图:

时间: 2024-10-02 05:20:37

深入理解Java内存模型(三) 顺序一致性的相关文章

深入理解Java内存模型系列篇

[本文转载于深入理解Java内存模型,可点击每个章节标题查看原文] 深入理解Java内存模型(一)--基础 并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模型里,线程之间没有公共状态,线程之间必

深入理解Java内存模型(七)——总结

处理器内存模型 顺序一致性内存模型是一个理论参考模型,JMM和处理器内存模型在设计时通常会把顺序一致性内存模型作为参照.JMM和处理器内存模型在设计时会对 顺序一致性模型做一些放松,因为如果完全按照顺序一致性模型来实现处理器和JMM,那么很多的处理器和编译器优化都要被禁止,这对执行性能将会有很大的影 响. 根据对不同类型读/写操作组合的执行顺序的放松,可以把常见处理器的内存模型划分为下面几种类型: 放松程序中写-读操作的顺序,由此产生了total store ordering内存模型(简称为TS

深入理解java内存模型系列文章

深入理解java内存模型系列文章是本人在InfoQ发表的并发编程的连载文章. 深入理解java内存模型(一)--基础 深入理解java内存模型(二)--重排序 深入理解java内存模型(三)--顺序一致性 深入理解java内存模型(四)--volatile 深入理解java内存模型(五)--锁 深入理解java内存模型(六)--final 深入理解java内存模型(七)--总结 提纲 java线程之间的通信对程序员完全透明,内存可见性问题很容易困扰java程序员,本文试图揭开java内存模型神秘

深入理解Java内存模型(二) 重排序

如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依 赖性.数据依赖分下列三种类型: 上 面三种情况,只要重排序两个操作的执行顺序,程序的执行结果将会被改变. 前面提到过,编译 器和处理器可能会对操作做重排序.编译器和处理器在重排序时,会遵守数据依赖性,编译器和处理器不 会改变存在数据依赖关系的两个操作的执行顺序. 注意,这里所说的数据依赖性仅针对单个处理 器中执行的指令序列和单个线程中执行的操作,不同处理器之间和不同线程之间的数据依赖性不被编译器 和处理器考

深入理解Java内存模型(五) 锁

锁的释放-获取建立的happens before 关系 锁是java并发编程中最重要的同步机制.锁除了让 临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息. 下面是锁释放-获取 的示例代码: class MonitorExample { int a = 0; public synchronized void writer() { //1 a++; //2 } //3 public synchronized void reader() { //4 int i = a; //5 -

深入理解Java内存模型(四) volatile

volatile的特性 当我们声明共享变量为volatile后,对这个变量的读/写将会很特别.理解 volatile特性的一个好方法是:把对volatile变量的单个读/写,看成是使用同一个监视器锁对这些单个 读/写操作做了同步.下面我们通过具体的示例来说明,请看下面的示例代码: class VolatileFeaturesExample { volatile long vl = 0L; //使用volatile声明64位的long型变量 public void set(long l) { vl

深入理解Java内存模型(六) final

与前面介绍的锁和volatile相比较,对final域的读和写更像是普通的变量访问.对于final域,编译 器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操 作之间不能重排序. 初次读一个包含final域的对象的引用,与随后初次读这个final域,这两个操作之间不能重排序. 下面,我们通过一些示例性的代码来分别说明这两个规则: public class FinalExample { int i; //普通变量 fin

深入理解Java内存模型(三)——顺序一致性

数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.java内存模型规范对数据竞争的定义如下: 在一个线程中写一个变量, 在另一个线程读同一个变量, 而且写和读没有通过同步来排序. 当代码中包含数据竞争时,程序的执行往往产生违反直觉的结果(前一章的示例正是如此).如果一个多线程程序能正确同步,这个程序将是一个没有数据竞争的程序. JMM对正确同步的多线程程序的内存一致性做了如下保证: 如果程序是正确同步的,程序的执行将具有顺序一致性(sequentially consistent)–

深入理解Java内存模型(一) 基础

并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之 间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令 式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程 之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模 型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信. 同步是指程 序用于控制不同线程之间操作发生相对顺序的机制.在共