图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图。

设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 B(G)。其中 T(G)是遍历图时所经过的边的集合,B(G) 是遍历图时未经过的边的集合。显然,G1(V, T) 是图 G 的极小连通子图,即子图G1 是连通图 G 的生成树。

深度优先生成森林

  右边的是深度优先生成森林:

连通图的生成树不一定是唯一的,不同的遍历图的方法得到不同的生成树;从不同的顶点出发可得到不同的生成树。

连通图本身就是连通分量,其中顶点集+遍历经过的边=生成树。

非连通图的生成森林不一定是唯一的。

非连通图各个连通分量的顶点集+遍历时经过的边=若干颗生成树(生成森林)

最小生成树 
给定一个无向网络,在该网的所有生成树中,使得各边权数之和最小的那棵生成树称为该网的最小生成树。

问题的提出:要在 n 个城市间建立交通网,要考虑的问题如何在保证 n 点连通的前题下最节省经费? 

如何求连通图的最小生成树?

构造最小生成树的算法很多,其中多数算法都利用了一种称之为 MST 的性质。

MST 性质:设 N = (V, E)  是一个连通网,U 是顶点集 V 的一个非空子集。若边 (u, v) 是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边 (u, v) 的最小生成树。

方法一:普里姆 (Prim) 算法。

算法思想:

1、设 N=(V, E) 是连通网,TE 是N 上最小生成树中边的集合。初始令 U={u0}, (u0属于V ), TE={ }。

2、在所有 u属于U, v属于V-U 的边 (u, v)属于E 中,
 找一条代价最小的边 (u0, v0)。 

将 (u0, v0) 并入集合 TE,同时 v0 并入 U。
 

 
 

3、
 

重复上述操作直至 U=V 为止,则 T=(V, TE) 为 N 的最
 

小生成树。

 

 

 总得来说,普里姆算法就是以树为单位,找最小的权边,特点是针对无向图!只和顶点有关,和边无关,适用于稠密图。算法时间复杂度为 O(n^2)

如图:普里姆算法求最小生成树

初始令 U={u0}, (u0属于V ), TE={ }。

   

在所有 u属于U, v属于V-U 的边 (u, v)属于E 中,找一条代价最小的边 (u0, v0)。将 (u0, v0) 并入集合 TE,同时 v0 并入 U。

   

重复上述操作直至 U=V 为止,则 T=(V, TE) 为 N 的最小生成树。

    

继续

    

最后,遍历完

    

Prim算法的实现 

顶点集合如何表示?最小边如何选择?一个顶点加入U集合如何表示?如下面的例子:

当U集合中加入一个新顶点时,V-U集合中的顶点到U的最小代价边可能会更新,k 代表最终选择的顶点,k=3,代表选择是v3这个顶点,因为1-3代价是最小的=1

选取了 v3,之后,继续以最新的树为单位,来找最小的权值边,通过看和哪个顶点连接。

k=6,代表选择是v6这个顶点,因为3-6代价是最小的=4,在所有的和最新的树邻接的顶点中,权值最小的边。

选取 v6之后

继续以最新的树为单位,找临近的顶点,看哪条边的权值最小,找到6-4这条边,权值=2

新的树如图

继续以最新的树为单位,找临近的顶点,看哪条边的权值最小,找到3-2这条边,权值=5

新的树如图

继续以最新的树为单位,找临近的顶点,看哪条边的权值最小,找到2-5这条边,权值=3

直到所有顶点全部并入生成树之后,程序结束

 

方法二:克鲁斯卡尔 (Kruskal) 算法。

使用了并查集,直接从边中找到不成环的最小的权边(最简单的求最小生成树的算法),特点:只针对无向图,包好普里姆算法,都是只针对无向图。

算法思想:

1、设连通网  N = (V, E ),令最小生成树初始状态为只有 n 个顶点而无边的非连通图 T=(V, { }),每个顶点自成一个连通分量。

2、在 E 中选取代价最小的边,若该边依附的顶点落在 T 中不同的连通分量上(即:不能形成环),则将此边加入到 T 中;否则,舍去此边,选取下一条代价最小的边。

3、依此类推,直至 T 中所有顶点都在同一连通分量上为止。

最小生成树可能不惟一(包括普里姆算法都是一样的道理)

把所有的边按照权值升序排列,从最小边开始(不能形成回路),选取,组成最小生成树。直到所有的边并入则结束(不是顶点!)克鲁斯卡尔算法主要在排序边的权值序列的时候最费时间,他的算法时间复杂度和排序算法有关,而排序算法的时间复杂度和图的边 e 有关系,和顶点 v 没有关系。故适用于稀疏图。(而普里姆算法适合稠密图)

下面是图解步骤:

按照升序,找出权值的排序序列:1 2 3 4 5 5 5 6 6 6

注意选取权值最小的边的时候,不要形成回路

按照权值的升序排列的顺序查找选取合适的边

继续,按照权值的升序排列的顺序查找选取合适的边

注意选取5的时候,避免环的生成,即可

直到所有的边都并入即可。

那么在克鲁斯卡尔算法里,通过找合适的边,该如何避免形成回路呢?换句话说,如何判断是否形成了回路?

使用并查集可以判断是否形成了回路,kruskal算法用到了一种贪心策略,首先要把边集数组以边的权值从小到大排序,然后一条边一条边的查找,如果边的两个端点不在一个集合内,则将此边添加到正在生长的树林中,并合并两个端点所在的集合,直到最小生成树已生成完毕。

并查集:

是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。集就是让每个元素构成一个单元素的集合,也就是按一定顺序将属于同一组的元素所在的集合合并。 

并查集是一种非常简单的数据结构,它主要涉及两个基本操作,分别为:

A. 合并两个不相交集合

B. 判断两个元素是否属于同一个集合

1)合并两个不相交集合(Union(x,y))

合并操作很简单:先设置一个数组Father[x],在克鲁斯卡尔算法里,需要使用双亲存储结构,表示x的“父亲”的编号。那么,合并两个不相交集合的方法就是,找到其中一个集合最父亲的父亲(也就是最久远的祖先),将另外一个集合的最久远的祖先的父亲指向它。

通俗的说,就是把其中一个树的根,作为另一个树的根结点的一个孩子结点即可。

上图为两个不相交集合,合并后可以看出:Father(b)=Father(g)=f 结点

2)判断两个元素是否属于同一集合(Find_Set(x)),本操作可转换为寻找两个元素的最久远祖先是否相同。可以采用递归实现。

并查集的优化问题

寻找祖先时,我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度。为了避免这种情况,我们需对路径进行压缩,即当我们经过”递推”找到祖先节点后,”回溯”的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示。可见,路径压缩方便了以后的查找。

回到克鲁斯卡尔算法,使用并查集来实现判断回路的生成否

比如从 v1开始(一共是 v1、v2、v3、v4、v5、v6),则开始把 v1-v6作为各个单根树,以森林来表示,让每个元素构成一个个的单元素的集合,需要使用数组表示,存储方式就是双亲存储结构(方便找到共同的父亲)。

每次使用并查集,将后入的边上的另一个结点作为孩子结点,而没有加入的结点还是去做为单根的树:

如图所示,上图,该选取权值=5的边了,此时有两个树

   和   

如果选取3-4或者1-4这两条边的任意一个,单根树是不会产生根相同的情形的,而加入的(作为孩子的根),一定会找到共同祖先的,这样就可以发现回路的存在! 而选取2-3这条边的话,在并查集中,就不会查出共同的祖先,也就是没有环的形成。

通俗的说,就是通过两个元素所在的结点推出跟结点,若根相同,则为同一个集合,否则不是同一个集合(也就是不形成回路)

 

辛苦的劳动,转载请注明出处,谢谢……

http://www.cnblogs.com/kubixuesheng/p/4403280.html

时间: 2024-11-01 21:56:10

图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用的相关文章

邻接矩阵prim:php实现图的邻接矩阵及普里姆(prim算法),弗洛伊德(floyd),迪杰斯特拉(dijkstra)算法

<?phprequire 'mgraph.php';$a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');$b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'

【算法小总结】Prim算法与Kruskal算法探索

以前以为自己用的生成最小生成树的方法是Prim算法,今天自己拜读了<数据结构与算法分析>之后才知道自己有多愚蠢,原来以前一直用的是KrusKal算法...... 今天好好说道说道这两个算法: KrusKal算法用于稀疏图,贪心策略,连续的按照最小的权值选择边. Prim算法用于稠密图,也是贪心策略,每次取离小生成树最近的点作为生成树的心点,并入生成树内生成新的小生成树,知道所有节点均被纳入生成树后结束.   这两种方法均可得到点点之间路径最短的联通图.   例如这个例子:   用Prim算法的

Prim算法(一) C语言详解

普里姆算法介绍 普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边.从所有uU,v(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图

Prim(普里姆)算法求最小生成树的思想及C语言实例讲解_C 语言

Prim 算法思想:从任意一顶点 v0 开始选择其最近顶点 v1 构成树 T1,再连接与 T1 最近顶点 v2 构成树 T2, 如此重复直到所有顶点均在所构成树中为止. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以把边上的权值解释为线路的造价.则最小生成树表示使其造价最小的生成树. 构造网的最小生成树必须解决下面两个问题: 1.尽可能选取权值小的边,但不能构成回路: 2.选取n-1条恰当的边以连通n个顶点: MST性质:假设G=(V,

普里姆算法介绍

普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边. 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,

Prim算法(三) Java详解

普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边.从所有uU,v(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,来对普里姆进

Prim算法(二) C++详解

普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边.从所有uU,v(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边. 普里姆算法图解 以上图G4为例,来对普里姆进

[算法系列之二十八]并查集(不相交集合)

一 概述 并查集(Disjoint set或者Union-find set)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题. 有一个联合-查找算法(union-find algorithm)定义了两个操作用于此数据结构: Find:确定元素属于哪一个子集.它可以被用来确定两个元素是否属于同一子集. Union:将两个子集合并成同一个集合. 因为它支持这两种操作,一个不相交集也常被称为联合-查找数据结构(union-find data structur

数据结构例程——最小生成树的克鲁斯卡尔算法

本文是[数据结构基础系列(7):图]中第12课时[最小生成树的克鲁斯卡尔算法]的例程. (程序中graph.h是图存储结构的"算法库"中的头文件,详情请单击链接-) #include <stdio.h> #include <malloc.h> #include "graph.h" #define MaxSize 100 typedef struct { int u; //边的起始顶点 int v; //边的终止顶点 int w; //边的权值