小白学数据分析----->什么是活跃_I(DAU)

最近和几个人聊天,大家对于活跃都有着自己的看法,此外因为一些标准的问题,不熟悉分析术语的很多人把活跃,留存等很多信息都搞混了.后来发现这是一个很现实的问题。在一些我 看来不是问题的问题都变成了问题了,因此在此特地说说活跃的事,帮助更多从事游戏数据分析的小白们成长。

究竟什么是活跃?在日常与外界合作过程中,我们经常日活跃、周活跃、月活跃等等信息,貌似听起来比较简单,但是真正如果自己实施操作统计数据时却发现自己又不懂这些定义,因此作为一些分析师、甚至开发人员就会发现很难去操作。以下我将描述三个活跃的定义、使用方式、分析方法以及注意事项,限于篇幅今天就说说日活跃的分析使用。

日活跃

统计标准

日活跃的统计标准有很多种,在RPG中有日活跃角色数和日活跃账号数。这类游戏由于存在创建角色的问题,所以一般会分成两种统计方式。一般比较多见的是日活跃账号数,可以认为就是日活跃用户数。当然,很多游戏室不存在这样的多角色概念,因此通用日活跃账号数来作为统计的标准为最佳。

当然,还有一种统计标准就是设备的唯一标示,比如MAC,这样统计日活跃设备数量,不过价值相对不大。

定义标准

统计日登录过游戏的账号数,此处要去重。

比如某日有1000个账号登录过游戏,总计登录次数为1600次(因为存在某些账号重复登录游戏),那么该日的日活跃账号数为1000。不要小看这个解释,在实际操作中,经常会出现问题,例如我们在写SQL语句提取数据时就应该加上distinct 进行去重操作:

Select count(distinct passportid) from playerlogintable

如果没有加上distinct 统计的就是所有登录玩家的总计的登录次数,这样就会出现大的问题。

日活跃能分析什么?

单单一天的日活跃其实只能与前一日或者历史同期做一个环比或者同比的分析。但是日活跃的能发挥的作用远远超出你的想象。

 

核心用户规模

核心用户规模的衡量其实和产品周期结合起来来看,在大部分游戏中,日活跃大概的构成可以分成以下的部分。

 

其中,新登用户对于日活跃用户的影响是最大的,一般新登占比达到40%,而这个比例其实是可以判断游戏核心用户规模的依据之一。

从上图的构成来看,如果新登用户在后续不断转化稳定的老用户以后,那么老活跃用户的规模是在不断增长的,同时,如果新登用户的注入水平保持不变,这样来看,游戏的核心用户有规模是在增长,并且新登用户所占的日活跃百分比是在下降的;如果新登用户注入水平也在增长,且不断转化为老用户,即核心用户规模也在增长,那么新登用户所占百分比会在一个区间稳定的变化的。

刚才所提到的核心用户规模,之所以使用日活跃用户来衡量,原因在于,以每日作为一个衡量的单位比较客观反映用户的游戏积极性,以日作为统计长度,恰好符合用户游戏的最短的周期性循环。

那么在日常的分析中,我们可以简单计算一个周期内,每日新登用户和活跃用户的关系比例,看一个长期趋势,一定程度上反映了目前核心用户的规模增长情况。

那这里有人会问,怎么看待回流用户的作用呢?

实际上,回流用户对于日活跃用户的贡献比例是极低的,但是该部分的贡献却不能够忽略,因为在重大节日、渠道推广等各种营销手段上线以后,会对于游戏日活跃产生一个很大的贡献值。但是一般而言,该部分的贡献比例比较低。

说了这么多,那么老用户和回流用户的定义究竟是怎样的?这里只给出参考的标准:

回流用户:统计日登录游戏,但是之前7天未登录过游戏的历史用户(所谓历史用户就是非新登用户,历史上登录过游戏的用户)

老活跃用户:如果粗略的计算,可以如下计算

日活跃用户数-日新登用户数-日回流用户

当然如果要精确衡量老用户规模,可以给予老用户定义,例如:

统计日登录游戏的用户,在此之前7日内再次登录过游戏(注意此处没有严格区分新登用户的情况,即也把新登用户的次日登录的部分计算为老用户,可按照实际需要提出此部分对于老用户的影响)。

下面我们通过几个曲线来简单说明一下怎么利用DAU分析问题。

首先我们要得到划定时间区段的DAU和DNU的曲线图,如下图:

 

在该图中,我们DAU和DNU的走势基本上是一致的,DNU对于DAU的影响还是比较大的,但是随着后期波动的减小,我们发现从106天到280天,两条曲线是呈现缓慢的下滑趋势的,但是这不足以说明问题,仔细观察,我们发现夹在两条曲线之间的面积是逐渐缩小的,而这部分面积就是DAU中除去DNU的部分,即我们可以认定是老用户的部分,这个面积的缩小,意味着用户的流失加剧,活跃用户的控制不得当,此外,也可能是新用户在短期内留存率不高引起的,那就需要结合留存率来看问题了,这里不讨论。

在发现上述的情况后,我们可以使用DAU-DNU的差值做一条曲线来进行分析这个问题。如下图所示:

 

可以很明显的看到,这个差值在逐渐走低,也就是说用户的活跃度是在下滑的,这个下滑可以认定是后期渠道导入用户质量不高造成的,也可以是产品本身的用户周期问题造成的。但是断定一点的是,这个时期,需要紧急的拉动用户规模增长,因此,可以看到,随后进行了两次相应的拉动,其规模有所提升。

此外,我们还要看一下新用户所占的比例曲线,如上文所述,基本维持在40%的水平上,但是有一个值得关注的是,当处于一个相对的稳定期时,即使有大范围的推广和拉动新登增长,那么这个比值的变化也不会太剧烈,唯一剧烈的原因就在于,原本游戏的老活跃用户规模就在下滑,流失较多。

 

当然了,用户的流失、产品的粘性等等都可以通过对DAU不同角度的解析获得相应的信息,这点也是要和其他数据结合来分析的,比如次日留存率,用户流失率、启动次数、登录时长分布等数据,找出来DAU中的虚假用户,例如1-3s用户非常多,那么在正常的网络和设计情况下,这种数据就可能是很多假用户造成的,也就是作弊行为。

再比如的情况,我们可以通过事件管理,区分推广和非推广时期的用户增长对DAU的影响,比如自然增长时期的新登用户对DAU的影响,判断DAU的质量,渠道的质量;或者推广时期的新登用户对DAU的影响情况分析。

如果需要的也可以结合用户的登录习惯,比如登录次数,登录天数等等数据进行忠诚活跃用户的阈值确定,以此来保证DAU的质量。

其实在DAU的背后,隐藏的问题和分析的要素很多,这个也是需要结合自己的业务需要来进行的,这里只是给大家提供一个分析的思路和方式。至于具体的问题,还要结合具体需求进行分析。不过话说回来,DAU的解析离不开细分数据和其他数据的支持,但是也是不一定一直细分进行数据的分析。因为有一些因素不是靠细分数据就一定能够得到的,还要经验积累,有关这部分的分析参见:

 http://www.cnblogs.com/yuyang-DataAnalysis/archive/2012/02/08/2303909.html

时间: 2024-09-22 17:59:54

小白学数据分析----->什么是活跃_I(DAU)的相关文章

小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析----->数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析----->付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析-----> 有关于流失分析的探讨

早先我曾探讨一个关于流失分析的整套流程问题,也说了流失分析是如何的重要,大概这种解说是苍白无力的,因为拿不出数据来说明这个问题,因此大家就会感觉比较飘渺,今天就是流失分析再次进行探讨,这次从数据的角度来理解为什么要做好流失分析. 挽留一个老用户相比于拉动一个新用户,在游戏收入.产品周期维护方面都有好处的,只是我们现在解决用户入口的问题,但是没有重视用户流失的问题.这个问题就好像一个水池子,有进口,但是也有出口,我们不能只关注进口的进水速率,却忽略了出水口的出水速率.这点对应了我们对于指标的量化和

小白学数据分析----->渠道、运营、数据_I

学分析论坛|专注于游戏数据分析 针对本文的相关的讨论,请移步http://www.xuefenxi.com/forum.php?mod=viewthread&tid=112&extra= 上周六做了一个演讲,关于渠道.数据.运营的内容,今天开始,针对演讲的一些内容,有针对性的阐述一下.不过既然我是一个数据分析师,自然还是从数据分析角度来看待这个问题,在后期的文章中,我会加入一些案例,帮助理解. 渠道是最有效的获取潜在用户的方式 渠道存在海量的用户资源,并服务于开发者.渠道本身聚合了大量的用

小白学数据分析----->付费渗透率_I 你的渗透率有价值吗?

早先在公司参加了一次付费渗透率的培训,后来觉得蛮有意思的,拿出来和大家分享一下,顺便说说我的看法. 在游戏运营数据分析中有一个非常重要的指标就是一个游戏的付费渗透率,所谓付费渗透率就是在一个游戏中,付费玩家占整个活跃玩家的比例,用数学表达式就是付费玩家数/活跃玩家数. "宏观上来说,付费渗透率代表了在玩家群体的付费意愿.消费观念和目前的游戏消费能力."某种程度上,这说明了游戏本身付费玩家转化能力,IB,经济系统是否为玩家所接受,是对OBT之后游戏收益能力的一个有效指标(当然也要结合AP

小白学数据分析-----> 利用SPSS对DAU/MAU进行比率分析

最近在看几个数据分析平台的数据,基本上都有DAU/MAU这个指标,这个指标很早之前就在社交游戏平台得以广泛使用,对于这个指标的一些解析,以前有写过,今天换个角度,通过比率分析来具体的分析一下这个DAU/MAU.或许从中你会得到一些其他的信息. DAU/MAU的传统分析与局限性 首先,我们来看一下这个图: 此图总结的是2011年12月25日到2012年9月19日的DAU/MAU的比值曲线图,可以看到初期的的变化比较剧烈,这点是因为刚刚开始测试,初期的DAU导入速度比MAU导入速度更快一些,因此此时

小白学数据分析----->与MySQL有关的小知识_I

放在这个专题下,是因为有时候我们数据分析师的确是懂得一点数据库的操作知识或者会一些SQL,平时我用的比较多的就是MySQL,如果说我们一般就是要学一些SQL操作的话,可能就足以应付平时的工作,至于对象,比如Oracle,DB2等等数据库产品,这种SQL尽管差异有很多,不过总体上可以一条路走下来.不过今天说的几个问题是和MySQL产品本身有关系的,因为我们一些数据处理和分析是需要它来帮忙的. 和MySQL打交道,基本我们都是在解决与数据库连接的问题比较挠头,下面简单说说怎么通过MySQL与Exce

小白学数据分析----->留存率与运营活动分析_I

有关留存率的事情最近扯得比较多,因为在分析数据的时候,越发觉得,分析一定是要来解决问题的,留存率不知何时突然变得流行了,在此讨论留存率倒不是因为流行,而是觉得以留存率为核心,的确是可以帮助我们解决不少的问题,但前提是,不要只停留在你所知道的次日,3日,7日留存率就OK,因为纵然你知道与benchmarks是差距,如果只抱着这个指标,你依然不知道自己该怎么做.下面会给大家一张图,让小白们看到,真正懂得要如何看待和分析留存率的,恰好,也验证我之前的一个观点. 公测100+周,各周新用户在他们各自生命