1. 质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0. \eee$$
2. 动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{2_1_2_dl} 为 $$\bee\label{2_1_2_Euler} \cfrac{\rd{\bf u}}{\rd t}+\cfrac{1}{\rho}\n p={\bf F}, \eee$$ 其中 $$\bex \cfrac{\rd }{\rd t}=\cfrac{\p}{\p t}+{\bf u}\cdot\n. \eex$$ 称 \eqref{2_1_2_Euler} 为 Euler 方程.
3. 能量守恒定律: $$\bee\label{2_1_2_nl} \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\Div\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }{\bf u}}=\rho {\bf F}\cdot{\bf u}. \eee$$
(1) \eqref{2_1_2_nl} 可化简为 $$\bex \cfrac{\rd S}{\rd t}=0, \eex$$ 其中 $S$ 为熵, 由 $$\bex \rd S=\cfrac{1}{T}(\rd e+p\rd \tau) \eex$$ 决定.
(2) 对多方气体, $$\bex p=A(S)\rho^\gamma, \quad A(S)=(\gamma-1)e^\frac{S-S_0}{c_V}, \eex$$ 其中 $\gamma>1$ 为绝热指数.