【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等

本文讲的是用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等,自然语言处理领域正在从统计学方法转向神经网络方法。在自然语言中,仍然存在许多具有挑战性的问题。但是,深度学习方法在某些特定的语言问题上取得了state-of-the-art的结果。不仅仅是在一些benchmark问题上深度学习模型取得的表现,这是最有趣的;事实上,单个模型可以学习单词的含义和执行语言任务,从而避免需要一套专门的、人工的方法。

这篇文章将介绍深度学习方法正在取得进展的7类有趣的自然语言处理任务。

  • 文本分类
  • 语言建模
  • 语音识别
  • 字幕生成
  • 机器翻译
  • 文档摘要
  • 问题回答

每个任务都提供了对问题的描述,一个例子,以及有关演示方法和结果的论文的引用。大多数参考资料来自Goldberg的A Primer on Neural Network Models for Natural Language Processing(https://arxiv.org/abs/1510.00726)。

1. 文本分类

给定一个文本的例子,预测一个预定义的类标签。

文本分类的目的是对文档的话题或主题进行分类。
——统计自然语言处理基础(Foundations of Statistical Natural Language Processing,1999)

流行的分类示例是情绪分析,其中类标签表示源文本的情绪基调,例如“积极”或“消极”。

以下是另外3个例子:

  • 垃圾邮件过滤,将电子邮件文本分类为垃圾邮件。
  • 语言识别,对源文本的语言进行分类。
  • 流派分类,对虚构故事的流派进行分类。

此外,这个问题也可能是一个文本被分为多个类的方式,即所谓的多标签分类。例如,预测源推文的多个标签。

更多阅读:

下面是有关文本分类的一些深度学习论文:

  • 对烂番茄影评的情感分析

Deep Unordered Composition Rivals Syntactic Methods for Text Classification, 2015. https://cs.umd.edu/~miyyer/pubs/2015_acl_dan.pdf

  • 对amazon产品评论、IMDB电影评论和分类主题新闻文章情绪分析

Effective Use of Word Order for Text Categorization with Convolutional Neural Networks, 2015. https://arxiv.org/abs/1412.1058

  • 对电影评论的情绪分析,将句子归类为主观或客观,对问题类型进行分类,对产品评论的情感进行分类,等等。

Convolutional Neural Networks for Sentence Classification, 2014. https://arxiv.org/abs/1408.5882

2. 语言建模

语言建模实际上是一个更有趣的自然语言问题的子任务,特别是那些在其他输入条件下调节语言模型的问题。

这个问题是根据前面的单词预测下一个单词。该任务是语音识别或光学字符识别(OCR)的基础,也用于拼写校正、手写识别和统计机器翻译。
——Foundations of Statistical Natural Language Processing (page 191), by Christopher D. Manning & Hinrich Schütze

除了语言建模的学术兴趣,它是许多深度学习自然语言处理架构的关键组成部分。语言模型学习词汇之间的概率关系,生成在统计上与源文本一致的新的词汇序列。

单独来说,语言模型可以用于文本或语音生成;例如:

  • 生成新的文章标题
  • 生成新的句子、段落或文档
  • 生成一个句子的后续句子

有关语言建模的更多内容,参阅:

下面是一个关于语言建模深度学习例子:

  • 英语文本、书籍和新闻文章的语言模型
  • 一种神经概率语言模型(A Neural Probabilistic Language Model)www.jmlr.org/papers/v3/bengio03a.html

3.语音识别

语音识别是指理解所说的问题。语音识别的任务是将一个包含自然语言话语的声音信号映射到说话者预期的相应序列。
——深度学习(page 458)

给定话语的音频数据,语音识别模型需要生成人类可读的文本。考虑到这个过程的自动性质,这个问题也可以被称为自动语音识别(ASR)。使用语言模型来创建文本输出,该输出基于音频数据。

一些例子包括:

  • 转录讲话
  • 为电影或电视节目制作文字说明
  • 开车时用语音发出指令

有关语音识别的更多信息,请参阅:

下面是三个用于语音识别的深度学习方法的例子:

英语语音转文本
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks,2006
www.cs.toronto.edu/~graves/icml_2006.pdf
Speech Recognition with Deep Recurrent Neural Networks, 2013.
https://arxiv.org/abs/1303.5778
Exploring convolutional neural network structures and optimization techniques for speech recognition, 2014.
https://www.microsoft.com/en-us/research/publication/exploring-convolutional-neural-network-structures-and-optimization-techniques-for-speech-recognition/

4. 字幕生成

字幕生成是有关描述图像内容的问题。给定例如照片等数字图像,生成图像内容的文本描述。语言模型用于创建以图像为条件的描述。

一些例子包括:

  • 描述场景内容
  • 创建照片标题
  • 描述视频

这不仅仅是为听力障碍者的应用,而且还可以生成可用于搜索图像和视频的具有可读性的文本,例如在网络上。

以下是3个字幕生成深入学习方法的例子:
生成照片标题
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2016.
https://arxiv.org/abs/1502.03044
Show and tell: A neural image caption generator, 2015.
https://arxiv.org/abs/1411.4555
生成视频字幕
Sequence to Sequence – Video to Text, 2015.
https://arxiv.org/abs/1505.00487

5. 机器翻译

机器翻译是将一种语言的源文本转换为另一种语言的问题。

机器翻译,将文本或语音从一种语言自动翻译成另一种语言,是NLP最重要的应用之一。
——统计自然语言处理基础,463页,1999。

考虑到神经网络的使用,这一领域也被称为神经机器翻译。

在机器翻译任务中,输入已经由某种语言的符号序列组成,并且计算机程序必须将其转换成其他语言的符号序列。这通常适用于自然语言,例如从英语翻译成法语。深度学习最近开始在这类任务上有重要影响。
——深度学习,98页,2016

语言模型用于以另一种语言输出目标文本,以源文本为条件。

一些例子包括:

  • 将文本文件从法语翻译成英语
  • 将西班牙语音频转换为德语文本
  • 将英语文本翻译成意大利语音频

有关神经机器翻译的更多信息,参阅:
神经机器翻译-维基百科 https://en.wikipedia.org/wiki/Neural_machine_translation

以下是机器翻译深度学习方法的3个例子:

将英语翻译成法语
Sequence to Sequence Learning with Neural Networks, 2014.
https://arxiv.org/abs/1409.3215
Neural Machine Translation by Jointly Learning to Align and Translate, 2014.
https://arxiv.org/abs/1409.0473
Joint Language and Translation Modeling with Recurrent Neural Networks, 2013.
https://www.microsoft.com/en-us/research/publication/joint-language-and-translation-modeling-with-recurrent-neural-networks/

6. 文档摘要

文档摘要是创建文本文档的简短描述的任务。即,使用语言模型来输出基于完整文档的总结性摘要。

文件摘要的一些例子包括:

  • 创建文档的标题
  • 创建文档的概要

有关该主题的更多信息,请参阅:

以下是关于文档摘要深度学习方法的3个例子:

新闻文章中的句子概要:
A Neural Attention Model for Abstractive Summarization, 2015.
https://arxiv.org/abs/1509.00685
Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond, 2016.
https://arxiv.org/abs/1602.06023
Neural Summarization by Extracting Sentences and Word, 2016.
https://arxiv.org/abs/1603.07252

7. 问题回答

问题回答是给出一个主题(例如文本文档)回答有关该主题的具体问题的任务。

一些例子:

  • 回答有关维基百科页面的问题
  • 回答有关新闻文章的问题
  • 回答有关病例的问题

参阅:
Question answering - 维基百科
https://en.wikipedia.org/wiki/Question_answering
回答有关新闻文章的问题
Teaching Machines to Read and Comprehend, 2015.
papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
回答一般知识问题
Question Answering over Freebase with Multi-Column Convolutional Neural Networks, 2015.
www.aclweb.org/anthology/P15-1026
回答基于特定文件的实质性问题
Deep Learning for Answer Sentence Selection, 2015.
https://arxiv.org/abs/1412.1632

时间: 2024-10-03 04:38:03

【资源】用深度学习解决自然语言处理中的7大问题,文本分类、语言建模、机器翻译等的相关文章

一文看尽深度学习RNN:为啥就它适合语音识别、NLP与机器翻译?

[ 导读 ]本文是机器学习大牛Jason Brownlee系统介绍RNN的文章,他在文中详细对比了LSTM.GRU与NTM三大主流架构在深度学习上的工作原理及各自特性.读过本文,你就能轻松GET循环神经网络在语音识别.自然语言处理与机器翻译等当前技术挑战上脱颖而出的种种原因. 循环神经网络(RNN)是一种人造神经网络,它通过赋予网络图附加权重来创建循环机制,以维持内部的状态. 神经网络拥有"状态"以后,便能在序列预测中明确地学习并利用上下文信息,如顺序或时间成分. 本文将一次性带你了解

深度学习实战篇-基于RNN的中文分词探索

近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平.百度在中文语音识别上取得了97%的准确率,已经超过了人类的识别能力. 随着深度学习在越来越多的领域中取得了突破性进展,自然语言处理这一人工智能的重要领域吸引了大批的研究者的注意力.最近谷歌发布了基于深度学习的机器翻译(GNMT),和基于短语的机器翻译相比,错误率降低了55%-85%以上,从而又引发了深度学习在自然语言处理上的热潮. 自然语

用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是"夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏".淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也是10亿量级,我们是任务是根据商品标题预测其所在叶子类目,示例中商品归属的类目为

如何在实战路上与时俱进:深度学习最佳实践

自2006年Hinton提出神经网络新的训练方法起,深度学习发展迅速,促使人工智能在图像.语音.自然语言处理等多个领域有了实质性的突破,达到产业应用标准.然而,深度学习作为人工智能领域的一项前瞻技术,实践性强,入门门槛高,关于深度学习的研究与应用,现在仍有很多问题没有找到满意的答案,这些都给深度学习的广泛应用带来挑战.本文旨在提供一份清晰.简洁的深度学习实践说明,以便从事深度学习研究与工程技术人员能够快速掌握深度学习的实际经验. 第一节:深度学习概述 深度学习是模拟人脑进行分析学习的多层神经网络

深度学习的昨天,今天和明天

机器学习是人工智能领域的一个重要学科.自从20世纪80年代以来机器学习在算法理论和应用等方面都获得巨大成功.2006年以来机器学习领域中一个叫深度学习的课题开始受到学术界广泛关注到今天已经成为互联网大数据和人工智能的一个热潮.深度学习通过建立类似于人脑的分层模型结构对输入数据逐级提取从底层到高层的特征从而能很好地建立从底层信号到高层语义的映射关系.近年来谷歌微软IBM百度等拥有大数据的高科技公司相继投入大量资源进行深度学习技术研发,在语音图像自然语言在线广告等领域取得显著进展.从对实际应用的贡献

AI初创公司Bitfusion融资500万美元简化深度学习项目

人工智能工作负载的复杂性可以让这些负载非常难以部署.应用团队必须构建专门的基础设施,有效地支持运行在底层的深度学习神经网络算法,而这正是Bitfusion正在努力解决的问题. 这家初创公司在新一轮融资中获得500万美元,投资方包括Sierra Ventures.Data Collective.Resonant Ventures Partners和Geekcom(一家位于美国德克萨斯州的加速器).Bitfusion宣布该消息的同时,还推出了Bitfusion AI Platform,这是一个革新的

大牛的《深度学习》笔记,Deep Learning速成教程

雷锋网(公众号:雷锋网)按:本文由Zouxy责编,全面介绍了深度学习的发展历史及其在各个领域的应用,并解释了深度学习的基本思想,深度与浅度学习的区别和深度学习与神经网络之间的关系. 深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里,深度学习颠覆了语音识别.图像分类.文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-end)的模型,然后直接

Deep Learning(深度学习)学习笔记整理系列之(一)(转)

目录: 一.概述 二.背景 三.人脑视觉机理 四.关于特征        4.1.特征表示的粒度        4.2.初级(浅层)特征表示        4.3.结构性特征表示        4.4.需要有多少个特征? 五.Deep Learning的基本思想 六.浅层学习(Shallow Learning)和深度学习(Deep Learning) 七.Deep learning与Neural Network 八.Deep learning训练过程        8.1.传统神经网络的训练方法

入门级攻略:机器学习 VS. 深度学习

楔子:      机器学习和深度学习现在很火,你会发现突然间很多人都在谈论它们.如下图所示,机器学习和深度学习的趋势对比(来自Google trend,纵轴表示搜索热度):   本文将会以简单易懂的语言及示例为大家详细解释深度学习和机器学习的区别,并介绍相关用途. 机器学习和深度学习简介 机器学习      Tom Mitchell 关于机器学习的定义被广泛引用,如下所示: 对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而不断自我完善,那么我们称这个计算机程序在从经