字符串的经典hash算法

http://hi.baidu.com/csdnail/blog/item/77b5771a262b1cd8ac6e75fc.html

字符串的经典hash算法

2010-06-06 15:10


1 概述

链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。 
设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash链表的构造和冲突的不同实现方法对效率当然有一定的影响,然而Hash函数是Hash链表最核心的部分,本文尝试分析一些经典软件中使用到的字符串Hash函数在执行效率、离散性、空间利用率等方面的性能问题。

打造最快的Hash表(和Blizzard的对话)

先提一个简单的问题,如果有一个庞大的字符串数组,然后给你一个单独的字符串,让你从这个数组中查找是否有这个字符串并找到它,你会怎么做?

有一个方法最简单,老老实实从头查到尾,一个一个比较,直到找到为止,我想只要学过程序设计的人都能把这样一个程序作出来。

最合适的算法自然是使用HashTable(哈希表),先介绍介绍其中的基本知识,所谓Hash,一般是一个整数,通过某种算法,可以把一个字符串"压缩" 成一个整数,这个数称为Hash,当然,无论如何,一个32位整数是无法对应回一个字符串的,但在程序中,两个字符串计算出的Hash值相等的可能非常小,下面看看在MPQ中的Hash算法

unsigned long HashString(char *lpszFileName, unsigned long dwHashType)

unsigned char *key = (unsigned char *)lpszFileName;
unsigned long seed1 = 0x7FED7FED, seed2 = 0xEEEEEEEE;
int ch;

while(*key != 0)

   ch = toupper(*key++);

seed1 = cryptTable[(dwHashType << 8) + ch] ^ (seed1 + seed2);
seed2 = ch + seed1 + seed2 + (seed2 << 5) + 3; 
}
return seed1; 
}

Blizzard的这个算法是非常高效的,被称为"One-Way Hash",举个例子,字符串"unitneutralacritter.grp"通过这个算法得到的结果是0xA26067F3。

int GetHashTablePos(char *lpszString, SOMESTRUCTURE *lpTable, int nTableSize)

int nHash = HashString(lpszString), nHashPos = nHash % nTableSize;

if (lpTable[nHashPos].bExists && !strcmp(lpTable[nHashPos].pString, lpszString)) 
   return nHashPos; 
else 
   return -1; //Error value 
}

看到此,我想大家都在想一个很严重的问题:"如果两个字符串在哈希表中对应的位置相同怎么办?",毕竟一个数组容量是有限的,这种可能性很大。解决该问题的方法很多,我首先想到的就是用"链表",感谢大学里学的数据结构教会了这个百试百灵的法宝,我遇到的很多算法都可以转化成链表来解决,只要在哈希表的每个入口挂一个链表,保存所有对应的字符串就OK了。

然而Blizzard的程序员使用的方法则是更精妙的方法。基本原理就是:他们在哈希表中不是用一个哈希值而是用三个哈希值来校验字符串。如果说两个不同的字符串经过一个哈希算法得到的入口点一致有可能,但用三个不同的哈希算法算出的入口点都一致,那几乎可以肯定是不可能的事了,这个几率是1: 18889465931478580854784,大概是10的 22.3次方分之一,对一个游戏程序来说足够安全了。

现在再回到数据结构上,Blizzard使用的哈希表没有使用链表,而采用"顺延"的方式来解决问题,看看这个算法:
int GetHashTablePos(char *lpszString, MPQHASHTABLE *lpTable, int nTableSize)

const int HASH_OFFSET = 0, HASH_A = 1, HASH_B = 2;
int nHash = HashString(lpszString, HASH_OFFSET);
int nHashA = HashString(lpszString, HASH_A);
int nHashB = HashString(lpszString, HASH_B);
int nHashStart = nHash % nTableSize, nHashPos = nHashStart;

while (lpTable[nHashPos].bExists)

   if (lpTable[nHashPos].nHashA == nHashA && lpTable[nHashPos].nHashB == nHashB) 
    return nHashPos; 
   else 
    nHashPos = (nHashPos + 1) % nTableSize;

   if (nHashPos == nHashStart) 
    break; 
}

return -1; //Error value 
}

1. 计算出字符串的三个哈希值(一个用来确定位置,另外两个用来校验)
2. 察看哈希表中的这个位置
3. 哈希表中这个位置为空吗?如果为空,则肯定该字符串不存在,返回
4. 如果存在,则检查其他两个哈希值是否也匹配,如果匹配,则表示找到了该字符串,返回
5. 移到下一个位置,如果已经越界,则表示没有找到,返回
6. 看看是不是又回到了原来的位置,如果是,则返回没找到
7. 回到3

 

/////////////////////////////////////////////////////////

其他的一些哈希函数:

/////////////////////////////////////////////////////////

2经典字符串Hash函数介绍 
作者阅读过大量经典软件原代码,下面分别介绍几个经典软件中出现的字符串Hash函数。 
2.1 PHP中出现的字符串Hash函数 
static unsigned long hashpjw(char *arKey, unsigned int nKeyLength) 

unsigned long h = 0, g; 
char *arEnd=arKey+nKeyLength;

while (arKey < arEnd) { 
h = (h << 4) + *arKey++; 
if ((g = (h & 0xF0000000))) { 
h = h ^ (g >> 24); 
h = h ^ g; 


return h; 

2.2 OpenSSL中出现的字符串Hash函数 
unsigned long lh_strhash(char *str) 

int i,l; 
unsigned long ret=0; 
unsigned short *s;

if (str == NULL) return(0); 
l=(strlen(str)+1)/2; 
s=(unsigned short *)str; 
for (i=0; i 
ret^=(s[i]<<(i&0x0f)); 
return(ret); 
} */

/* The following hash seems to work very well on normal text strings 
* no collisions on /usr/dict/words and it distributes on %2^n quite 
* well, not as good as MD5, but still good. 
*/ 
unsigned long lh_strhash(const char *c) 

unsigned long ret=0; 
long n; 
unsigned long v; 
int r;

if ((c == NULL) || (*c == '/0')) 
return(ret); 
/* 
unsigned char b[16]; 
MD5(c,strlen(c),b); 
return(b[0]|(b[1]<<8)|(b[2]<<16)|(b[3]<<24)); 
*/

n=0x100; 
while (*c) 

v=n|(*c); 
n+=0x100; 
r= (int)((v>>2)^v)&0x0f; 
ret=(ret(32-r)); 
ret&=0xFFFFFFFFL; 
ret^=v*v; 
c++; 

return((ret>>16)^ret); 

在下面的测量过程中我们分别将上面的两个函数标记为OpenSSL_Hash1和OpenSSL_Hash2,至于上面的实现中使用MD5算法的实现函数我们不作测试。 
2.3 MySql中出现的字符串Hash函数 
#ifndef NEW_HASH_FUNCTION

/* Calc hashvalue for a key */

static uint calc_hashnr(const byte *key,uint length) 

register uint nr=1, nr2=4; 
while (length--) 

nr^= (((nr & 63)+nr2)*((uint) (uchar) *key++))+ (nr << 8); 
nr2+=3; 

return((uint) nr); 
}

/* Calc hashvalue for a key, case indepenently */

static uint calc_hashnr_caseup(const byte *key,uint length) 

register uint nr=1, nr2=4; 
while (length--) 

nr^= (((nr & 63)+nr2)*((uint) (uchar) toupper(*key++)))+ (nr << 8); 
nr2+=3; 

return((uint) nr); 
}

#else

/* 
* Fowler/Noll/Vo hash 

* The basis of the hash algorithm was taken from an idea sent by email to the 
* IEEE Posix P1003.2 mailing list from Phong Vo (kpv@research.att.com) and 
* Glenn Fowler (gsf@research.att.com). Landon Curt Noll (chongo@toad.com) 
* later improved on their algorithm. 

* The magic is in the interesting relationship between the special prime 
* 16777619 (2^24 + 403) and 2^32 and 2^8. 

* This hash produces the fewest collisions of any function that we've seen so 
* far, and works well on both numbers and strings. 
*/

uint calc_hashnr(const byte *key, uint len) 

const byte *end=key+len; 
uint hash; 
for (hash = 0; key < end; key++) 

hash *= 16777619; 
hash ^= (uint) *(uchar*) key; 

return (hash); 
}

uint calc_hashnr_caseup(const byte *key, uint len) 

const byte *end=key+len; 
uint hash; 
for (hash = 0; key < end; key++) 

hash *= 16777619; 
hash ^= (uint) (uchar) toupper(*key); 

return (hash); 
}

#endif 
Mysql中对字符串Hash函数还区分了大小写,我们的测试中使用不区分大小写的字符串Hash函数,另外我们将上面的两个函数分别记为MYSQL_Hash1和MYSQL_Hash2。 
2.4 另一个经典字符串Hash函数 
unsigned int hash(char *str) 

register unsigned int h; 
register unsigned char *p;

for(h=0, p = (unsigned char *)str; *p ; p++) 
h = 31 * h + *p;

return h; 

3 测试及结果 
3.1 测试说明 
从上面给出的经典字符串Hash函数中可以看出,有的涉及到字符串大小敏感问题,我们的测试中只考虑字符串大小写敏感的函数,另外在上面的函数中有的函数需要长度参数,有的不需要长度参数,这对函数本身的效率有一定的影响,我们的测试中将对函数稍微作一点修改,全部使用长度参数,并将函数内部出现的计算长度代码删除。 
我们用来作测试用的Hash链表采用经典的拉链法解决冲突,另外我们采用静态分配桶(Hash链表长度)的方法来构造Hash链表,这主要是为了简化我们的实现,并不影响我们的测试结果。 
测试文本采用单词表,测试过程中从一个输入文件中读取全部不重复单词构造一个Hash表,测试内容分别是函数总调用次数、函数总调用时间、最大拉链长度、 平均拉链长度、桶利用率(使用过的桶所占的比率),其中函数总调用次数是指Hash函数被调用的总次数,为了测试出函数执行时间,该值在测试过程中作了一 定的放大,函数总调用时间是指Hash函数总的执行时间,最大拉链长度是指使用拉链法构造链表过程中出现的最大拉链长度,平均拉链长度指拉链的平均长度。 
测试过程中使用的机器配置如下: 
PIII600笔记本,128M内存,windows 2000 server操作系统。 
3.2 测试结果 
以下分别是对两个不同文本文件中的全部不重复单词构造Hash链表的测试结果,测试结果中函数调用次数放大了100倍,相应的函数调用时间也放大了100倍。

 

 

从上表可以看出,这些经典软件虽然构造字符串Hash函数的方法不同,但是它们的效率都是不错的,相互之间差距很小,读者可以参考实际情况从其中借鉴使用。

时间: 2024-09-14 08:45:03

字符串的经典hash算法的相关文章

php的hash算法介绍

 PHP的Hash采用的是目前最为普遍的DJBX33A (Daniel J. Bernstein, Times 33 with Addition), 这个算法被广泛运用与多个软件项目,Apache, Perl和Berkeley DB等.对于字符串而言这是目前所知道的最好的哈希算法,原因在于该算法的速度非常快,而且分类非常好(冲突小,分布均匀) Hash Table是PHP的核心,这话一点都不过分.   PHP的数组,关联数组,对象属性,函数表,符号表,等等都是用HashTable来做为容器的.

海量文档查同或聚类问题 -- Locality Sensitive Hash 算法

考虑一下这个场景 , 使用网络爬虫高速爬取大量的网页内容 , 如果想把这些网页进行实时聚类 , 并从中提取每个网页聚类的主题 . 我们应该怎么样去做 对于普通或常见的聚类算法 , 比如 K-means, 或 Hierarchical 聚类 , 无法适用于这个常见 , 对于这些聚类算法无法进行 incremental 聚类 , 即在聚类开始前必须知道整个数据集 , 而这个场景中的数据集是随着爬虫不断增多的 . 而且这些聚类算法的 performance 不够高 , 比如对于 K-means 需要不

php的hash算法介绍_php实例

Hash Table是PHP的核心,这话一点都不过分. PHP的数组,关联数组,对象属性,函数表,符号表,等等都是用HashTable来做为容器的. PHP的HashTable采用的拉链法来解决冲突, 这个自不用多说, 我今天主要关注的就是PHP的Hash算法, 和这个算法本身透露出来的一些思想. PHP的Hash采用的是目前最为普遍的DJBX33A (Daniel J. Bernstein, Times 33 with Addition), 这个算法被广泛运用与多个软件项目,Apache, P

JavaScript中数据结构与算法(五):经典KMP算法

  这篇文章主要介绍了JavaScript中数据结构与算法(五):经典KMP算法,本文详解了KMP算法的方方面在,需要的朋友可以参考下 KMP算法和BM算法 KMP是前缀匹配和BM后缀匹配的经典算法,看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同 前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从 左到右 后缀匹配是指:模式串和母串的的比较从右到左,模式串的移动从左到右. 通过上一章显而易见BF算法也是属于前缀的算法,不过就非常霸蛮的逐个匹配的效率自然不用提了O(mn),网上

怎样的Hash算法能对抗硬件破解?

一.前言 用过暴力破解工具 hashcat 的都知道,这款软件的强大之处在于它能充分利用 GPU 计算,比起 CPU 要快很多.所以在破解诸如 WiFi 握手包.数据库中的口令 Hash 值时,能大幅提高计算效率. 当然 GPU 仍属于通用硬件,显然还不是最优化的.要是为特定的算法打造特定的硬件,效率更是高出几个量级.比特币矿机就是很好的例子. 硬件仍在不断进步,系统安全等级若不提高,暴力破解将会越来越容易.因此,一种能抵抗「硬件破解」的 Hash 算法,显得很有必要. 二.时间成本 在探讨如何

Java实现一致性Hash算法深入研究

一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法和一致性Hash算法的算法原理做了详细的解读. 算法的具体原理这里再次贴上: 先构造一个长度为2 32 的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 2 32 -1])将服务器节点放置在这个Hash环上,然后根据数据的Key值计算得到其Hash值(其分布也为[0, 2 32 -1

基于一致性hash算法 C++语言的实现详解_C 语言

    一致性hash算法实现有两个关键问题需要解决,一个是用于结点存储和查找的数据结构的选择,另一个是结点hash算法的选择.     首先来谈一下一致性hash算法中用于存储结点的数据结构.通过了解一致性hash的原理,我们知道结点可以想象为是存储在一个环形的数据结构上(如下图),结点A.B.C.D按hash值在环形分布上是有序的,也就是说结点可以按hash值存储在一个有序的队列里.如下图所示,当一个hash值为-2^20的请求点P查找路由结点时,一致性hash算法会按hash值的顺时针方向

linux内核netfilter连接跟踪的hash算法

linux内核netfilter连接跟踪的hash算法   linux内核中的netfilter是一款强大的基于状态的防火墙,具有连接跟踪(conntrack)的实现.conntrack是netfilter的核心,许多增强的功能,例如,地址转换(NAT),基于内容的业务识别(l7, layer-7 module)都是基于连接跟踪.然而,netfilter的性能还有很多值得改进的地方. netfilter的连接跟踪的hash算法是在Bob Jenkins的lookup2.c基础上的改进实现,Bob

【转载】对一致性Hash算法,Java代码实现的深入研究

原文地址:http://www.cnblogs.com/xrq730/p/5186728.html   一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法.一致性Hash算法的算法原理做了详细的解读. 算法的具体原理这里再次贴上: 先构造一个长度为232的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 232-1])将服务器节点放置