R语言数据挖掘2.1.1.2 频繁子序列

2.1.1.2 频繁子序列

频繁子序列是元素的一个有序列表,其中每个元素包含至少一个事件。一个例子是某网站页面访问序列,具体而言,它是某个用户访问不同网页的顺序。下面给出了频繁子序列的两个例子。

消费者数据:某些客户在购物商城连续的购物记录可作为序列,购买的每个商品作为事件项,用户一次购买的所有项作为元素或事务。

网页使用数据:访问WWW历史记录的用户可作为一个序列,每个UI/页面作为一个事件或项目,元素或事务定义为用户通过一次鼠标的单击访问的页面。

序列中包含的项数定义为序列的长度。长度为k的序列定义为k序列。序列的大小定义为序列中项集的数目。当满足1≤j1≤j2≤…≤jr-1≤jr≤v,且a1bj1, a2bj2, …, arbjr,则称序列s1=<a1a2…ar>为序列s2=<b1b…br>的子序列或s2为s1的超序列。

时间: 2024-09-24 09:17:19

R语言数据挖掘2.1.1.2 频繁子序列的相关文章

《R语言数据挖掘》----第2章 频繁模式、关联规则和相关规则挖掘 2.1关联规则和关联模式概述

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.1节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 第2章 频繁模式.关联规则和相关规则挖掘 本章中,我们将首先学习如何用R语言挖掘频繁模式.关联规则及相关规则.然后,我们将使用基准数据评估所有这些方法以便确定频繁模式和规则的兴趣度.本章内容主要涵盖以下几个主题: 关联规则和关联模式概述 购物篮分析 混合关联规则挖掘

《R语言数据挖掘》----导读

Preface 前 言 世界各地的统计学家和分析师正面临着处理许多复杂统计分析项目的迫切问题.由于人们对数据分析领域的兴趣日益增加,所以R语言提供了一个免费且开源的环境,非常适合学习和有效地利用现实世界中的预测建模方案.随着R语言社区的不断发展及其大量程序包的不断增加,它具备了解决众多实际问题的强大功能. R编程语言诞生已经有数十年了,它已经变得非常知名,不但被社区的科学家而且被更广泛的开发者社区所熟知.它已经成长为一个强大的工具,可以帮助开发者在执行数据相关任务时生成有效且一致的源代码.由于R

R语言数据挖掘

数据分析与决策技术丛书 R语言数据挖掘 Learning Data Mining with R [哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel) 著 李洪成 许金炜 段力辉 译 图书在版编目(CIP)数据 R语言数据挖掘 / (哈)贝特·麦克哈贝尔(Bater Makhabel)著:李洪成,许金炜,段力辉译. -北京:机械工业出版社,2016.9 (数据分析与决策技术丛书) 书名原文:Learning Data Mining with R ISBN 978-7-111-54769-

《R语言数据挖掘》——2.2 购物篮分析

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.2节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 2.2 购物篮分析 购物篮分析(Market basket analysis)是用来挖掘消费者已购买的或保存在购物车中物品组合规律的方法.这个概念适用于不同的应用,特别是商店运营.源数据集是一个巨大的数据记录,购物篮分析的目的发现源数据集中不同项之间的关联关系. 2

《R语言数据挖掘》----1.2 数据源

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.2节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.2 数据源 数据充当数据挖掘系统的输入,因此数据存储库是非常重要的.在企业环境中,数据库和日志文件是常见来源:在网络数据挖掘中,网页是数据的来源:连续地从各种传感器中提取数据也是典型的数据源. 这里有一些免费的在线数据源十分有助于学习数据挖掘: 频繁项集挖掘数据

《R语言数据挖掘》----1.3 数据挖掘

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.3节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 1.3 数据挖掘 数据挖掘就是在数据中发现一个模型,它也称为探索性数据分析,即从数据中发现有用的.有效的.意想不到的且可以理解的知识.有些目标与其他科学,如统计学.人工智能.机器学习和模式识别是相同的.在大多数情况下,数据挖掘通常被视为一个算法问题.聚类.分类.关联

《R语言数据挖掘》——2.3 混合关联规则挖掘

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.3节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 2.3 混合关联规则挖掘 关联规则挖掘有两个有意义的应用:一是多层次和多维度关联规则挖掘:二是基于约束的关联规则挖掘. 2.3.1 多层次和多维度关联规则挖掘 对于给定的事务数据集,若数据集的某些维度存在概念层次关系,则需要对该数据集进行多层次关联规则挖掘.对事物数

《R语言数据挖掘》——2.8 总结

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.8节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 2.8 总结 本章主要学习了以下内容: 购物篮分析. 作为关联规则挖掘的第一步,频繁项集是一个主要因素.除算法设计外,定义了闭项集.最大频繁项集. 作为关联规则挖掘的目标,通过支持计数.置信度等度量来挖掘关联规则.除支持计数外,使用相关公式挖掘相关规则. 频繁项集的

《R语言数据挖掘》----第1章 预备知识 1.1大数据

本节书摘来自华章出版社<R语言数据挖掘>一书中的第1章,第1.1节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 第1章 预备知识 本章中,你将学习基本的数据挖掘术语,比如数据定义.预处理等.最重要的数据挖掘算法将通过R语言进行说明,以便帮助你快速掌握原理,包括但不局限于分类.聚类和异常值检测.在深入研究数据挖掘之前,我们来看一看将要介绍的主题:数据挖掘社交网络挖掘文本挖掘网络

《R语言数据挖掘》——2.7 练习

本节书摘来自华章出版社<R语言数据挖掘>一书中的第2章,第2.7节,作者[哈萨克斯坦]贝特·麦克哈贝尔(Bater Makhabel),李洪成 许金炜 段力辉 译,更多章节内容可以访问"华章计算机"公众号查看. 2.7 练习 为加强对本章内容的掌握,这里给出一些有助于更好理解相关概念的实践问题. 编写R程序,寻找给定的样本购物篮事务文件中包含了多少唯一的项名.将每个项的名字映射为一个整数ID.找出所有的频繁闭项集.找出所有最大频繁项集和它们的支持计数.你自己将支持计数阈值设