背景
今天早上,领导给了我一个任务:在老的系统运行中,DBA反馈说获取database TableMeta操作有点慢,让我分析下基于oracle driver驱动是否可以做下优化。由此引出了本文,仅仅做一个记录。
内容
在补充几点背景知识:
1. 老系统介绍
- 老系统主要负责的业务是做跨机房之间的数据库记录同步,需要获取数据库的table meta信息,进行构造对应的sql。将源数据的columns变化,通过sql方式更新到目标库上。
- table meta信息分析时,需要获取table的字段,主键,需要支持视图,同义词等表查询
2. table meta操作原理
1.jdbcTemplate.execute(new ConnectionCallback() {
2.
3. public Object doInConnection(Connection c) throws SQLException, DataAccessException {
4. DatabaseMetaData meta = c.getMetaData();
5. meta.getTables(catalog, schemaPattern, tableNamePattern, types);
6. meta.getColumns(catalog, schemaPattern, tableNamePattern, columnNamePattern);
7. meta.getPrimaryKeys(catalog, schema, table);
8. return null;
9. }
10. });
简单一点说,就是利用java.sql.DatabaseMetaData接口中定义的meta信息获取接口进行处理。
mysql/oracle实现
oracle实现(oracle.jdbc.driver.OracleDatabaseMetaData):
1. getTables
主要是通过构造对应的SQL进行查询,主要是关联了all_objects 和 all_tab_comments, all_synonyms
1.SELECT NULL AS table_cat,
2.o.owner AS table_schem,
3.o.object_name AS table_name,
4.o.object_type AS table_type,
5.c.comments AS remarks
6.FROM all_objects o, all_tab_comments c
7.WHERE o.owner LIKE #schema# ESCAPE '/'
8.AND o.object_name LIKE #table# ESCAPE '/'
9.AND o.object_type IN ('TABLE', 'SYNONYM', 'VIEW')
10.AND o.owner = c.owner (+)
11.AND o.object_name = c.table_name (+)
12.UNION
13.SELECT NULL AS table_cat,
14.s.owner AS table_schem,
15.s.synonym_name AS table_name,
16.'SYNONYM' AS table_table_type,
17.c.comments AS remarks
18.FROM all_synonyms s, all_objects o, all_tab_comments c
19.WHERE s.owner LIKE #schema# ESCAPE '/'
20.AND s.synonym_name LIKE #table# ESCAPE '/'
21.AND s.table_owner = o.owner
22.AND s.table_name = o.object_name
23.AND o.object_type IN ('TABLE', 'VIEW')
24.AND o.owner = c.owner (+)
25.AND o.object_name = c.table_name (+)
26.ORDER BY table_type, table_schem, table_name
注意一下#schema# , #table#的替换,可以使用%进行模糊匹配
2. getColumns
主要是通过构造对应的SQL进行查询,主要关联了all_tab_comments, all_synonyms, all_col_comments.
1.SELECT NULL AS table_cat,
2.DECODE(s.table_owner, NULL, t.owner, s.table_owner) AS table_schem,
3.DECODE(s.synonym_name, NULL, t.table_name, s.synonym_name) AS table_name,
4.t.column_name AS column_name,
5.DECODE (t.data_type, 'CHAR', 1, 'VARCHAR2', 12, 'NUMBER', 3,
6.'LONG', -1, 'DATE', 93 , 'RAW', -3, 'LONG RAW', -4, 'BLOB', 2004, 'CLOB', 2005, 'BFILE', -13, 'FLOAT', 6, 'TIMESTAMP(6)',
7.93, 'TIMESTAMP(6) WITH TIME ZONE', -101, 'TIMESTAMP(6) WITH LOCAL TIME ZONE', -102, 'INTERVAL YEAR(2) TO MONTH', -103,
8.'INTERVAL DAY(2) TO SECOND(6)', -104, 'BINARY_FLOAT', 100, 'BINARY_DOUBLE', 101, 1111) AS data_type,
9.t.data_type AS type_name,
10.DECODE (t.data_precision, null, t.data_length, t.data_precision) AS column_size,
11.0 AS buffer_length,
12.t.data_scale AS decimal_digits,
13.10 AS num_prec_radix,
14.DECODE (t.nullable, 'N', 0, 1) AS nullable,
15.c.comments AS remarks,
16.t.data_default AS column_def,
17.0 AS sql_data_type,
18.0 AS sql_datetime_sub,
19.t.data_length AS char_octet_length,
20.t.column_id AS ordinal_position,
21.DECODE (t.nullable, 'N', 'NO', 'YES') AS is_nullable
22.FROM all_tab_columns t , all_col_comments c , all_synonyms s
23.WHERE (t.owner LIKE #schema# ESCAPE '/' OR
24. (s.owner LIKE #schema# ESCAPE '/' AND t.owner = s.table_owner))
25. AND (t.table_name LIKE #table# ESCAPE '/' OR
26. s.synonym_name LIKE #table# ESCAPE '/')
27. AND t.column_name LIKE #column# ESCAPE '/'
28. AND t.owner = c.owner (+) AND t.table_name = c.table_name (+) AND t.column_name = c.column_name (+)
29. AND s.table_name (+) = t.table_name AND ((DECODE(s.owner, t.owner, 'OK','PUBLIC', 'OK',NULL, 'OK','NOT OK') = 'OK') OR (s.owner LIKE 'SRF' AND t.owner = s.table_owner))
30. ORDER BY table_schem, table_name, ordinal_position
注意一下#schema# , #table# , #column#的替换,可以使用%进行模糊匹配
3. getPrimaryKeys
主要是通过构造对应的SQL进行查询,主要关联了 all_cons_columns, all_constraints
1.SELECT NULL AS table_cat,
2.c.owner AS table_schem,
3.c.table_name,
4.c.column_name,
5.c.position AS key_seq,
6.c.constraint_name AS pk_name
7.FROM all_cons_columns c, all_constraints k
8.WHERE k.constraint_type = 'P'
9. AND k.table_name = #table# AND k.owner like #schema# escape '/'
10. AND k.constraint_name = c.constraint_name
11. AND k.table_name = c.table_name
12. AND k.owner = c.owner
13. ORDER BY column_name
注意一下#schema# , #table# 的替换,可以使用%进行模糊匹配
mysql实现:
1.使用sql语法查询对应的INFORMATION_SCHEMA信息
1.SELECT TABLE_SCHEMA AS TABLE_CAT,
2.NULL AS TABLE_SCHEM, TABLE_NAME,
3.CASE WHEN TABLE_TYPE='BASE TABLE' THEN 'TABLE' WHEN TABLE_TYPE='TEMPORARY' THEN 'LOCAL_TEMPORARY' ELSE TABLE_TYPE END AS TABLE_TYPE,
4.TABLE_COMMENT AS REMARKS
5.FROM INFORMATION_SCHEMA.TABLES WHERE
6.TABLE_SCHEMA LIKE #schema# AND TABLE_NAME LIKE #table# AND TABLE_TYPE IN ('BASE TABLE','VIEW','TEMPORARY')
7.ORDER BY TABLE_TYPE, TABLE_SCHEMA, TABLE_NAME
2.使用show命令查询对应的meta信息
1.SHOW TABLES from retl like 'columns';
2.show full columns from columns from retl like 'text%' ;
具体的getTables,getColumns,getPrimaryKeys的实现就不一一贴了,有兴趣的可以自己去看看
优化方案
目前我们新老系统分别使用了ddlutils和schemacrawler两种tablemeta分析方案,最终都是基于DatabaseMetaData进行数据获取。
- ddlutils:版本1.0(比较早的版本,目前最新为1.3)
- schemacrawler:版本8.7
两者在实现上没有本质的区别,只不过在schemacrawler在meta信息的获取上可自定义性更强,比如你只关注table,不关注columns,primarykeys,foreignkey等,都可以通过SchemaCrawlerOptions进行指定
schemaCrawler例子:
1.Connection connection = dataSource.getConnection();
2.DatabaseMetaData databaseMetaData = connection.getMetaData();
3.String nameSpace = dataMedia.getNamespace();
4.String name = dataMedia.getName();
5.if (databaseMetaData.storesUpperCaseIdentifiers()) {// 识别大小写
6. nameSpace = nameSpace.toUpperCase();
7. name = name.toUpperCase();
8.}
9.if (databaseMetaData.storesLowerCaseIdentifiers()) {
10. nameSpace = nameSpace.toLowerCase();
11. name = name.toLowerCase();
12.}
13.
14.final SchemaCrawlerOptions options = new SchemaCrawlerOptions();
15.options.setSchemaInfoLevel(SchemaInfoLevel.standard());
16.options.setSchemaInclusionRule(new InclusionRule(nameSpace, InclusionRule.NONE));
17.options.setTableInclusionRule(new InclusionRule(nameSpace + "." + name, InclusionRule.NONE));
18.Database database = SchemaCrawlerUtility.getDatabase(connection, options);
19.
20.Schema[] schemas = database.getSchemas();
21.
22.for(Schema schema : schemas) {
23. for (Table table: Schema.getTables()) {
24. Column[] columns = table.getColumns();
25. }
26.
27.
28.
29.
30.
31.}
分析本质,主要还是调用DatabaseMediaData进行操作
1. MetadataResultSet results = null;
2. results = new MetadataResultSet(getMetaData()
3..getTables(unquotedName(catalogName),
4. unquotedName(schemaName),
5. tableNamePattern,
6. TableType.toStrings(tableTypes)));// 调用getTables方法
7.
8. while (results.next())
9. {
10.// "TABLE_CAT", "TABLE_SCHEM"
11.final String tableName = quotedName(results.getString("TABLE_NAME"));
12.final TableType tableType = results.getEnum("TABLE_TYPE",TableType.unknown);
13.final String remarks = results.getString("REMARKS");
14.
15.final MutableSchema schema = lookupSchema(catalogName, schemaName);
16......
17.
18.if (tableInclusionRule.include(table.getFullName()))
19.{
20. table.setType(tableType);
21. table.setRemarks(remarks);
22.
23. schema.addTable(table);
24.}
25. }
通过代码分析,可以看到获取meta信息的方式,总共有3次SQL查询.
- 先获取匹配的表 getTables
- 对应的所有字段 getColumns
- 获取字段的主键信息 getPrimaryKeys
因此总结一下优化方案:
- 因为我们是精确的table匹配,所以第一次的匹配表查询SQL可以避免。如果需要优化需要copy schemacrawl的部分代码进行优化。(少一次SQL查询,不过会给代码带来一定的维护成本)
- oracle driver中针对同义词表的查询,在整个查询过程中都会去关联all_synonyms表,影响查询性能。(不过后续otter4.0上线后,可以支持非同名表的查询,以后可以逐步废弃同义词表的使用,从而优化meta信息的查询)
- oracle/mysql driver在查询所有字段上都支持批量查询多个表,即意味着我们可以一次性查询相同schema下的所有同步表的信息。 (调整有一定的成本,需要完全自己解析ResultSet的结果对象,支持将Result解析为多个 Table)
最后
本文可能对他人借鉴意义并不是非常大,只为自己做一下记录,项目第一个版本上线后再来做一下对应的优化方案。优化无止境,fighting!!!!!