回顾2016年大数据发展,盘点十大热门数据岗位

随着很多大公司对数据分析需求增多,数据相关岗位的人才需求量也越来越大。 数据学作为一门学科,已经受到时代的追捧。数据学,或者更准确来说,大数据,在2000年早期还是个冷门,而现在早已成为人们关注的焦点。早在2014年,高德纳咨询公司就预测,到2016年将有73%的公司企业将在大数据项目中投入重金。 2016年的尾声即将到来,我们是时候回顾一下大数据的发展,盘点十大最热门的数据岗位。

随着很多大公司对数据分析需求增多,数据相关岗位的人才需求量也越来越大。 数据学作为一门学科,已经受到时代的追捧。数据学,或者更准确来说,大数据,在2000年早期还是个冷门,而现在早已成为人们关注的焦点。早在2014年,高德纳咨询公司就预测,到2016年将有73%的公司企业将在大数据项目中投入重金。 2016年的尾声即将到来,我们是时候回顾一下大数据的发展,盘点十大最热门的数据岗位。

TOP1 首席数据官(CDO)

三军不可无帅也,所有想在大数据项目中取得成功的公司都需要首席数据官坐镇指挥。2014年CDO数量只有400人,2015年增长到了1000人,据此,加德纳预计,到2019年90%的英国大公司都会拥有自己的首席数据官。 首席数据官的工作内容非常多,职责也很复杂,他们负责公司的数据框架搭建、数据管理、数据安全保证、商务智能管理、数据洞察和高级分析。因此,首席数据师必须个人能力出众,同时还需要具备足够的领导力和远见,找准公司发展目标,协调应变管理过程。

TOP2 营销分析师/客户关系管理分析师

客户忠诚度项目、网络分析和物联网技术积攒了大量的用户数据,很多先进公司已经在使用相关策略来支持公司的发展计划。尤其是市场部门能够运用这些数据进行更有针对性的营销。营销分析师能够发挥他们在Excel和SQL等数据分析工具方面的专业特长,对客户进行细分,确保数字化营销能够到达目标客户群体。当与Adobe Campaigns等广告系列管理软件配合使用时,公司企业就可以确保其营销策略达到最佳效果。

TOP3 数据工程师

随着Hadoop和非结构化数据仓库的流行,所有分析功能的第一要务就是要得到正确的数据。商务智能和数据科学都要求有干净的、有序的且可用的数据框架,而这通常是通过SQL服务器、甲骨文(Oracle)和SAP公司数据库来实现的。高水平的工程师需要掌握数据管理技能,熟悉提取转换加载过程,很多公司都急需这样的人才。事实上,很多首席数据官甚至认为,数据工程师才是大数据相关行业中最重要的职位。

TOP4 商务智能开发工程师

商务智能开发工程师的最基本职能,是管理结构数据从数据库分配至终端用户的过程。商务智能(BI)曾经只是商务金融的基础,现在已经独立出来,成为了单独的部门,很多商务智能团队正在搭建自服务指示板,这样运营经理就能快速且有效地获取高性能数据,评价公司运营情况。 商务智能最重要的技术目前都掌握在主要科技巨头手中,包括微软商务智能软件包(SSIS/SSAS/SSRS/PowerBI),甲骨文(OBIEE, OBIA),SAP(BusinessObjects)和IBM(Cognos)。

TOP5 数据可视化

你可能会奇怪,我为什么把可视化摆在商务智能研发工程师前面。但是随着指示板和可视化工具的增多,商务智能“前端”研发工程师需要更熟练掌握Tableau、QlikView/QlikSense、 SiSense和Looker。能够使用d3.js在网络浏览器中制作数据可视化的研发工程师也越来越受到公司欢迎。很多大公司开出的年薪已经超过了7万5千英镑,平均日薪500多英镑。

TOP6 软件研发工程师

这个也是大数据相关岗位?随着大数据的发展,很多公司都开始打造基于大数据平台的网页应用。除了掌握Javascript、C#、PHP和Diango Python框架等传统软件研发工具,大数据软件研发工程师还需要熟练使用Pyramid或者Flask。

TOP7 大数据工程师

正如上文提到过的,数据工程师的工作是负责管理公司的数据,包括数据的收集,存储、处理和分析。从经验来看,这涉及到使用关系型数据库,来管理以表格方式存储的数据。有很多关于数据怎样才能被定义为大数据的讨论。为了得到这个问题的结论,必须综合考虑结构化和非结构化数据(图像,视频,音频文件等),它们往往是实时收集的,并且过于复杂,因此不能由传统数据结构处理。 大数据工程师需要能够搭建并维护大型异构数据框架,这些数据通常是在MongoDB等NoSQL数据库中。很多公司采用Hadoop框架和很多Hadoop次级软件包,如Hive(数据软件),Pig(数据流语言)和Spark(多编程模型),当然数据基础设施还远远不止这些。

TOP8洞察分析师

可能每个公司对这个职位的叫法不一样,但不可否认,现在具备执行力且精通技术的分析师炙手可热。通常,他们都会和产品部门、市场部门紧密合作,运用数据编程工具来整合大数据集,得出分析结论,支持发展客户群,制定维持客户关系策略。 从技术的角度来说,洞察分析师需要掌握各种数据编程工具,如SQL、SAS和SPSS等。但是很多公司都希望能够使用R和Python来获得更深度的分析,同时还要与RStudio等软件包配合使用,来生动地表达可视化数据分析结果。

TOP9数据架构师

在大数据环境中运行程序是一回事,而构建大数据基础设施则是另一回事。一个卓越的数据架构师可为尖端的大数据解决方案提供基础,其职责包括使用AWS,Azure和Google Cloud了解云中的数据存储和使用Hadoop或NoSQL设计基础架构数据库来管理非结构化数据。

TOP10数据科学家

最近,Glassdoor表示,数据科学家是“美国的最佳工作”,是数据世界的常驻“摇滚明星”。关于谁才是真正的数据科学家,曾引起了世界范围内的讨论,参与这场讨论有许多强大学术背景的博士硕士,他们在统计学,数学,物理学,经济学,数据挖掘和机器学习方面都具备深厚专业知识。 优秀的数据科学家能够使用先进的分析原理和Python,R或Spark等数据编程工具来识别并解决高度复杂的业务问题。他们的分析将在决策中发挥核心作用,提供智力支持,以确保公司能够在日益复杂的商业环境中获得成功。

本文转自d1net(转载)

时间: 2024-09-23 01:04:41

回顾2016年大数据发展,盘点十大热门数据岗位的相关文章

全国首部《大数据蓝皮书》指出:中国大数据发展呈现十大新趋势

大数据战略重点实验室研究编著.社会科学文献出版社出版的<大数据蓝皮书:中国大数据发展报告No.1>(简称<大数据蓝皮书>)5月28日正式发布.作为全国首部<大数据蓝皮书>,从制度.技术.产业和学科建设等层面对大数据的发展进行分析与研判,并提出中国大数据发展的十大新趋势. 趋势之一:丰富细致的政策体系助推大数据落地.从中央到地方,更加丰富的配套政策与实施细则将促进大数据加快落地,更多地方政府积极推进大数据发展,并在大数据政用.商用.民用领域打造大数据应用的典范. 趋势之二

2017年大数据发展的十大趋势以及在各行业的应用潜力

2016年,大数据已从前两年的预期膨胀阶段.炒作阶段转入理性发展阶段.落地应用阶段.2017年,大数据依然处于理性发展期,依然存在诸多挑战,但前景依然非常乐观.2017年大数据的发展呈现十大趋势: 趋势1:越来越多的企业实现数据孤岛的打通,驱动大数据发挥更强的威力 企业启动大数据最重要的挑战是数据的碎片化.在很多企业中尤其是大型的企业,数据常常散落在不同部门,而且这些数据存在不同的数据仓库中,不同部门的数据技术也有可能不通,导致企业内部数据无法打通.若不打通,大数据的价值则难以挖掘.大数据需要不

大数据来袭 盘点十大最有用的云数据库

随着商业交易内所蕴含数据量的不断增加,服务提供商正在想办法让公有云的数据管理变得更加轻松.大数据正变得越来越重要,云服务提供商希望涉足企业数据库领域. 研究机构IDC预言,大数据将按照每年60%的比率增加,其中包含结构化和非结构化数据.企业需要想办法发挥这些数据的作用,而长期以来数据库就是一个非常好的解决方案.目前服务提供商正通过云技术推出更多可在公有云中托管这些数据库的方法,将用户从繁琐的数据库硬件定制中解放出来,同时让用户拥有数据库扩展能力.研究公司Wikibon的大数据研究专家JeffKe

回顾2016年大数据的发展,盘点十大最热门的数据岗位

随着很多大公司对数据分析需求增多,数据相关岗位的人才需求量也越来越大.数据学作为一门学科,已经受到时代的追捧.数据学,或者更准确来说,大数据,在2000年早期还是个冷门,而现在早已成为人们关注的焦点.早在2014年,高德纳咨询公司就预测,到2016年将有73%的公司企业将在大数据项目中投入重金. 2016年的尾声即将到来,我们是时候回顾一下大数据的发展,盘点十大最热门的数据岗位. TOP1 首席数据官(CDO) 三军不可无帅也,所有想在大数据项目中取得成功的公司都需要首席数据官坐镇指挥.2014

2017年大数据领域的十大趋势

文章讲的是2017年大数据领域的十大趋势,曾有媒体将2013年称为"大数据元年",经过两三年大数据依然热度不减,但是也有专家认为前几年大数据一直处于一个很尴尬的局面,大数据不接地气,人人都在谈大数据,但真正应用大数据的人很少.2016年,各行各业的大数据应用都渐渐从空洞的理论落地,所以很多专家认为2016年才是真正意义上的大数据元年. 无论如何,大数据已经成为IT领域的流行趋势.据不完全统计,2016年1-6月,全球大数据行业共计发生157起投融资事件,涉及金额超过600亿元,亚马逊.

物联网未来发展的十大趋势,你跟上了吗?

注:纵轴为ZB,1ZB=1万亿GB 目前我们正处于一个物联网的时代,而物联网也改变着我们的衣食住行.随着物联网的普及,物联网的未来发展趋势也初现端倪.最近,伦敦举办了新一届的物联网峰会,而从此次大会的内容上,我们也可以看出物联网未来发展的十大趋势. 1.安全问题是关键.随着越来越多的设备被连接到物联网之中,这些设备的安全问题就显得尤为重要.尤其是对于使用物联网技术的企业来说,企业内部信息和数据的安全自然是企业所要考虑的核心问题. 2.销量不是目的.尽管物联网设备制造商们每年都在推出大量的物联网产

IDC周震刚:中国大数据市场的十大预测

2012年7月24日,主题为"芯动大数据 智领大机遇"的英特尔大数据论坛在北京举行.会上,IDC中国企业级系统与软件研究部高级研究经理周震刚分享了大数据市场的观察. IDC中国企业级系统与软件研究部高级研究经理周震刚 周震刚表示,IDC一直把大数据.云和移动以及社交这四个主题当做未来IT的主要方向.IDC在大数据方面已经做了大概三四年的研究,IDC中国从去年开始对大数据市场做了深入研究. 什么是大数据?--四个"V" 周震刚介绍道,IDC对大数据的定义是四个&quo

大数据营销的十大切入点

2013年似乎人人都在谈论大数据,然而说得云里雾里者多.许多企业家更关心的事是:如何才能真正找到大数据营销的切入点? 大数据营销的十大切入点 许多人感觉到大数据时代正在到来,但往往只是一种朦胧的感觉,对于其真正对营销带来的威力可以用一个时髦的词来形容--不明觉厉.实际上,还是应尽量弄明白,才会明白其厉害之处.对于多数企业而言,大数据营销的主要价值源于以下几个方面. 第一,用户行为与特征分析.显然,只要积累足够的用户数据,就能分析出用户的喜好与购买习惯,甚至做到"比用户更了解用户自己".

数据分析图的十大错误,你占了几个?

"数据可视化"是个好帮手,可以帮助用户理解数据.但是,你真的会用它吗?看看这里,数据可视化的十大错误你占了几个? 优秀的数据可视化依赖优异的设计,并非仅仅选择正确的图表模板那么简单.全在于以一种更加有助于理解和引导的方式去表达信息,尽可能减轻用户获取信息的成本.当然并非所有的图表制作者都精于此道.所以我们看到的图表表达中,各种让人啼笑皆非的错误都有,下面就是这些错误当容易纠正的例子: 1.饼图顺序不当 饼图是一种非常简单的可视化工具,但他们却常常过于复杂.份额应该直观排序,而且不要超过