自从iOS系统引入了Blur效果,也就是所谓的毛玻璃、模糊化效果、磨砂效果,各大系统就开始竞相模仿,这是怎样的一个效果呢,我们先来看一下,如下面的图片:
实现效果大家都知道了,如何在Android中实现呢,说白了就是对图片进行模糊化处理,小编先给大家讲一下Android高级模糊技术的原理,如下:
- 首先我创建了一个空的bitmap,把背景的一部分复制进去,之后我会对这个bitmap进行模糊处理并设置为TextView的背景。
- 通过这个bitmap保存Canvas的状态;
- 在父布局文件中把Canvas移动到TextView的位置;
- 把ImageView的内容绘到bitmap中;
- 此时,我们就有了一个和TextView一样大小的bitmap,它包含了ImageView的一部分内容,也就是TextView背后一层布局的内容;
- 创建一个Renderscript的实例;
- 把bitmap复制一份到Renderscript需要的数据片中;
- 创建Renderscript模糊处理的实例;
- 设置输入,半径范围然后进行模糊处理;
- 把处理后的结果复制回之前的bitmap中;
- 好了,我们已经把bitmap惊醒模糊处理了,可以将它设置为TextView背景了;
我最近在做一款App,其中有一个功能需要对图片处理实现毛玻璃的特效,经过一番研究,找到了3中实现方案,其中各有优缺点,如果系统的api在16以上,可以使用系统提供的方法直接处理图片,但是小编认为下边的解决方案是实现效果最好的。
代码如下:
public Bitmap fastblur(Context context, Bitmap sentBitmap, int radius) { Bitmap bitmap = sentBitmap.copy(sentBitmap.getConfig(), true); if (radius < 1) { return (null); } int w = bitmap.getWidth(); int h = bitmap.getHeight(); int[] pix = new int[w * h]; bitmap.getPixels(pix, 0, w, 0, 0, w, h); int wm = w - 1; int hm = h - 1; int wh = w * h; int div = radius + radius + 1; int r[] = new int[wh]; int g[] = new int[wh]; int b[] = new int[wh]; int rsum, gsum, bsum, x, y, i, p, yp, yi, yw; int vmin[] = new int[Math.max(w, h)]; int divsum = (div + 1) >> 1; divsum *= divsum; int temp = 256 * divsum; int dv[] = new int[temp]; for (i = 0; i < temp; i++) { dv[i] = (i / divsum); } yw = yi = 0; int[][] stack = new int[div][3]; int stackpointer; int stackstart; int[] sir; int rbs; int r1 = radius + 1; int routsum, goutsum, boutsum; int rinsum, ginsum, binsum; for (y = 0; y < h; y++) { rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0; for (i = -radius; i <= radius; i++) { p = pix[yi + Math.min(wm, Math.max(i, 0))]; sir = stack[i + radius]; sir[0] = (p & 0xff0000) >> 16; sir[1] = (p & 0x00ff00) >> 8; sir[2] = (p & 0x0000ff); rbs = r1 - Math.abs(i); rsum += sir[0] * rbs; gsum += sir[1] * rbs; bsum += sir[2] * rbs; if (i > 0) { rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; } else { routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; } } stackpointer = radius; for (x = 0; x < w; x++) { r[yi] = dv[rsum]; g[yi] = dv[gsum]; b[yi] = dv[bsum]; rsum -= routsum; gsum -= goutsum; bsum -= boutsum; stackstart = stackpointer - radius + div; sir = stack[stackstart % div]; routsum -= sir[0]; goutsum -= sir[1]; boutsum -= sir[2]; if (y == 0) { vmin[x] = Math.min(x + radius + 1, wm); } p = pix[yw + vmin[x]]; sir[0] = (p & 0xff0000) >> 16; sir[1] = (p & 0x00ff00) >> 8; sir[2] = (p & 0x0000ff); rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; rsum += rinsum; gsum += ginsum; bsum += binsum; stackpointer = (stackpointer + 1) % div; sir = stack[(stackpointer) % div]; routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; rinsum -= sir[0]; ginsum -= sir[1]; binsum -= sir[2]; yi++; } yw += w; } for (x = 0; x < w; x++) { rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0; yp = -radius * w; for (i = -radius; i <= radius; i++) { yi = Math.max(0, yp) + x; sir = stack[i + radius]; sir[0] = r[yi]; sir[1] = g[yi]; sir[2] = b[yi]; rbs = r1 - Math.abs(i); rsum += r[yi] * rbs; gsum += g[yi] * rbs; bsum += b[yi] * rbs; if (i > 0) { rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; } else { routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; } if (i < hm) { yp += w; } } yi = x; stackpointer = radius; for (y = 0; y < h; y++) { pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum]; rsum -= routsum; gsum -= goutsum; bsum -= boutsum; stackstart = stackpointer - radius + div; sir = stack[stackstart % div]; routsum -= sir[0]; goutsum -= sir[1]; boutsum -= sir[2]; if (x == 0) { vmin[y] = Math.min(y + r1, hm) * w; } p = x + vmin[y]; sir[0] = r[p]; sir[1] = g[p]; sir[2] = b[p]; rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; rsum += rinsum; gsum += ginsum; bsum += binsum; stackpointer = (stackpointer + 1) % div; sir = stack[stackpointer]; routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; rinsum -= sir[0]; ginsum -= sir[1]; binsum -= sir[2]; yi += w; } } bitmap.setPixels(pix, 0, w, 0, 0, w, h); return (bitmap); }
以上就是本文的全部内容,帮助大家轻松实现毛玻璃效果,希望大家喜欢。
以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索android
, 毛玻璃效果
模糊处理
android实现高斯模糊、高斯模糊和毛玻璃区别、ios 图片毛玻璃模糊、高斯模糊 毛玻璃、毛玻璃模糊效果,以便于您获取更多的相关知识。
时间: 2024-12-04 09:29:23