无锁有序链表的实现

无锁有序链表可以保证元素的唯一性,使其可用于哈希表的桶,甚至直接作为一个效率不那么高的map。普通链表的无锁实现相对简单点,因为插入元素可以在表头插,而有序链表的插入则是任意位置。

本文主要基于论文High Performance Dynamic Lock-Free Hash Tables实现。

 

主要问题

链表的主要操作包含insertremove,先简单实现一个版本,就会看到问题所在,以下代码只用作示例:

struct node_t {
        key_t key;
        value_t val;
        node_t *next;
    };

    int l_find(node_t **pred_ptr, node_t **item_ptr, node_t *head, key_t key) {
        node_t *pred = head;
        node_t *item = head->next;
        while (item) {
            int d = KEY_CMP(item->key, key);
            if (d >= 0) {
                *pred_ptr = pred;
                *item_ptr = item;
                return d == 0 ? TRUE : FALSE;
            }
            pred = item;
            item = item->next;
        }
        *pred_ptr = pred;
        *item_ptr = NULL;
        return FALSE;
    }

    int l_insert(node_t *head, key_t key, value_t val) {
        node_t *pred, *item, *new_item;
        while (TRUE) {
            if (l_find(&pred, &item, head, key)) {
                return FALSE;
            }
            new_item = (node_t*) malloc(sizeof(node_t));
            new_item->key = key;
            new_item->val = val;
            new_item->next = item;
            // A. 如果pred本身被移除了
            if (CAS(&pred->next, item, new_item)) {
                return TRUE;
            }
            free(new_item);
        }
    }

    int l_remove(node_t *head, key_t key) {
        node_t *pred, *item;
        while (TRUE) {
            if (!l_find(&pred, &item, head, key)) {
                return TRUE;
            }
            // B. 如果pred被移除;如果item也被移除
            if (CAS(&pred->next, item, item->next)) {
                haz_free(item);
                return TRUE;
            }
        }
    }

l_find函数返回查找到的前序元素和元素本身,代码A和B虽然拿到了preditem,但在CAS的时候,其可能被其他线程移除。甚至,在l_find过程中,其每一个元素都可能被移除。问题在于,任何时候拿到一个元素时,都不确定其是否还有效。元素的有效性包括其是否还在链表中,其指向的内存是否还有效。

解决方案

通过为元素指针增加一个有效性标志位,配合CAS操作的互斥性,就可以解决元素有效性判定问题。

因为node_t放在内存中是会对齐的,所以指向node_t的指针值低几位是不会用到的,从而可以在低几位里设置标志,这样在做CAS的时候,就实现了DCAS的效果,相当于将两个逻辑上的操作变成了一个原子操作。想象下引用计数对象的线程安全性,其内包装的指针是线程安全的,但对象本身不是。

CAS的互斥性,在若干个线程CAS相同的对象时,只有一个线程会成功,失败的线程就可以以此判定目标对象发生了变更。改进后的代码(代码仅做示例用,不保证正确):

typedef size_t markable_t;
    // 最低位置1,表示元素被删除
    #define HAS_MARK(p) ((markable_t)p & 0x01)
    #define MARK(p) ((markable_t)p | 0x01)
    #define STRIP_MARK(p) ((markable_t)p & ~0x01)

    int l_insert(node_t *head, key_t key, value_t val) {
        node_t *pred, *item, *new_item;
        while (TRUE) {
            if (l_find(&pred, &item, head, key)) {
                return FALSE;
            }
            new_item = (node_t*) malloc(sizeof(node_t));
            new_item->key = key;
            new_item->val = val;
            new_item->next = item;
            // A. 虽然find拿到了合法的pred,但是在以下代码之前pred可能被删除,此时pred->next被标记
            //    pred->next != item,该CAS会失败,失败后重试
            if (CAS(&pred->next, item, new_item)) {
                return TRUE;
            }
            free(new_item);
        }
        return FALSE;
    }

    int l_remove(node_t *head, key_t key) {
        node_t *pred, *item;
        while (TRUE) {
            if (!l_find(&pred, &item, head, key)) {
                return FALSE;
            }
            node_t *inext = item->next;
            // B. 删除item前先标记item->next,如果CAS失败,那么情况同insert一样,有其他线程在find之后
            //    删除了item,失败后重试
            if (!CAS(&item->next, inext, MARK(inext))) {
                continue;
            }
            // C. 对同一个元素item删除时,只会有一个线程成功走到这里
            if (CAS(&pred->next, item, STRIP_MARK(item->next))) {
                haz_defer_free(item);
                return TRUE;
            }
        }
        return FALSE;
    }

    int l_find(node_t **pred_ptr, node_t **item_ptr, node_t *head, key_t key) {
        node_t *pred = head;
        node_t *item = head->next;
        hazard_t *hp1 = haz_get(0);
        hazard_t *hp2 = haz_get(1);
        while (item) {
            haz_set_ptr(hp1, pred);
            haz_set_ptr(hp2, item);
            /*
             如果已被标记,那么紧接着item可能被移除链表甚至释放,所以需要重头查找
            */
            if (HAS_MARK(item->next)) {
                return l_find(pred_ptr, item_ptr, head, key);
            }
            int d = KEY_CMP(item->key, key);
            if (d >= 0) {
                *pred_ptr = pred;
                *item_ptr = item;
                return d == 0 ? TRUE : FALSE;
            }
            pred = item;
            item = item->next;
        }
        *pred_ptr = pred;
        *item_ptr = NULL;
        return FALSE;
    }

haz_gethaz_set_ptr之类的函数是一个hazard pointer实现,用于支持多线程下内存的GC。上面的代码中,要删除一个元素item时,会标记item->next,从而使得insert时中那个CAS不需要做任何调整。总结下这里的线程竞争情况:

  • insertfind到正常的preditempred->next == item,然后在CAS前有线程删除了pred,此时pred->next == MARK(item)CAS失败,重试;删除分为2种情况:a) 从链表移除,得到标记,pred可继续访问;b)pred可能被释放内存,此时再使用pred会错误。为了处理情况b,所以引入了类似hazard pointer的机制,可以有效保障任意一个指针p只要还有线程在使用它,它的内存就不会被真正释放
  • insert中有多个线程在pred后插入元素,此时同样由insert中的CAS保证,这个不多说
  • remove中情况同insertfind拿到了有效的prednext,但在CAS的时候pred被其他线程删除,此时情况同insertCAS失败,重试
  • 任何时候改变链表结构时,无论是remove还是insert,都需要重试该操作
  • find中遍历时,可能会遇到被标记删除的item,此时item根据remove的实现很可能被删除,所以需要重头开始遍历

ABA问题

ABA问题还是存在的,insert中:

if (CAS(&pred->next, item, new_item)) {
        return TRUE;
    }

如果CAS之前,pred后的item被移除,又以相同的地址值加进来,但其value变了,此时CAS会成功,但链表可能就不是有序的了。pred->val < new_item->val > item->val

为了解决这个问题,可以利用指针值地址对齐的其他位来存储一个计数,用于表示pred->next的改变次数。当insert拿到pred时,pred->next中存储的计数假设是0,CAS之前其他线程移除了pred->next又新增回了item,此时pred->next中的计数增加,从而导致insertCAS失败。

// 最低位留作删除标志
    #define MASK ((sizeof(node_t) - 1) & ~0x01)

    #define GET_TAG(p) ((markable_t)p & MASK)
    #define TAG(p, tag) ((markable_t)p | (tag))
    #define MARK(p) ((markable_t)p | 0x01)
    #define HAS_MARK(p) ((markable_t)p & 0x01)
    #define STRIP_MARK(p) ((node_t*)((markable_t)p & ~(MASK | 0x01)))

remove的实现:

/* 先标记再删除 */
    if (!CAS(&sitem->next, inext, MARK(inext))) {
        continue;
    }
    int tag = GET_TAG(pred->next) + 1;
    if (CAS(&pred->next, item, TAG(STRIP_MARK(sitem->next), tag))) {
        haz_defer_free(sitem);
        return TRUE;
    }

insert中也可以更新pred->next的计数。

总结

无锁的实现,本质上都会依赖于CAS的互斥性。从头实现一个lock free的数据结构,可以深刻感受到lock free实现的tricky。最终代码可以从这里github获取。代码中为了简单,实现了一个不是很强大的hazard pointer,可以参考之前的博文

时间: 2024-10-03 14:52:16

无锁有序链表的实现的相关文章

C/C++中无锁有序链表的实现例子

主要问题 链表的主要操作包含insert和remove,先简单实现一个版本,就会看到问题所在,以下代码只用作示例: struct node_t {         key_t key;         value_t val;         node_t *next;     };     int l_find(node_t **pred_ptr, node_t **item_ptr, node_t *head, key_t key) {         node_t *pred = head

使用CAS实现无锁的SkipList

感谢同事[付哲]发布此文. 无锁 并发环境下最常用的同步手段是互斥锁和读写锁,例如pthread_mutex和pthread_readwrite_lock,常用的范式为: void ConcurrencyOperation() { mutex.lock(); // do something mutex.unlock(); } 这种方法的优点是: 编程模型简单,如果小心控制上锁顺序,一般来说不会有死锁的问题: 可以通过调节锁的粒度来调节性能. 缺点是: 所有基于锁的算法都有死锁的可能: 上锁和解锁

java无锁hashmap原理与实现详解_java

java多线程环境中应用HashMap,主要有以下几种选择:使用线程安全的java.util.Hashtable作为替代​使用java.util.Collections.synchronizedMap方法,将已有的HashMap对象包装为线程安全的.使用java.util.concurrent.ConcurrentHashMap类作为替代,它具有非常好的性能.而以上几种方法在实现的具体细节上,都或多或少地用到了互斥锁.互斥锁会造成线程阻塞,降低运行效率,并有可能产生死锁.优先级翻转等一系列问题.

Java中无锁HashMap的原理与实现教程

在<Java出现HashMap的死循环的原因及解决方法>中,我们看到,java.util.HashMap并不能直接应用于多线程环境.对于多线程环境中应用HashMap,主要有以下几种选择: 使用线程安全的java.util.Hashtable作为替代. 使用java.util.Collections.synchronizedMap方法,将已有的HashMap对象包装为线程安全的. 使用java.util.concurrent.ConcurrentHashMap类作为替代,它具有非常好的性能.

无锁并发框架Disruptor

概述 在逛并发编程网的时候,看到了并发框架Disruptor译文这个系列文章. Martin Fowler在自己网站上写了一篇LMAX架构(译文)的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易.这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单.业务逻辑处理器完全是运行在内存中,使用事件源驱动方式.业务逻辑处理器的核心是Disruptor. Disruptor它是一个开源的并发框架,能够在无锁的情况下实现网络

无锁和无等待的定义和例子

原文链接,译文连接,译者:周可人,校对:梁海舰 在查阅google之后,我发现没有一处对并发算法或是数据结构规定的演进条件(progress condition,注:参考[1],译者认为翻译为演进状态更为合适)做合理的解释.甚至在"The Art of Multiprocessor Programming"中也只有围绕书本的一小段定义,大部分定义是单行的句子,因而造成了我们普通人含义模糊的理解,所以在这里我把我对这些概念的理解整理在一起,并且在每一种概念后面给出相应的例子. 我们先将演

并发编程(三): 使用C++11实现无锁stack(lock-free stack)

前几篇文章,我们讨论了如何使用mutex保护数据及使用使用condition variable在多线程中进行同步.然而,使用mutex将会导致一下问题: 等待互斥锁会消耗宝贵的时间 - 有时候是很多时间.这种延迟会损害系统的scalability.尤其是在现在可用的core越多越多的情况下. 低优先级的线程可以获得互斥锁,因此阻碍需要同一互斥锁的高优先级线程.这个问题称为优先级倒置(priority inversion ). 可能因为分配的时间片结束,持有互斥锁的线程被取消调度.这对于等待同一互

PgSQL · 源码分析 · PG中的无锁算法和原子操作应用一则

原子操作概述 近年来随着服务器上CPU核数的不断增加,无锁算法(Lock Free)越来越广泛的被应用于高并发的系统中.PostgreSQL 做为世界上最高级开源数据库也在9.5时引入了无锁算法.本文先介绍了无锁算法和原子操作在PostgreSQL中的具体实现, 再通过一个Patch来看一下在PostgreSQL中是如何利用它来解决实际的高并发问题的. 无锁算法是利用CPU的原子操作实现的数据结构和算法来解决原来只能用锁才能解决的并发控制问题. 众所周知,在一个并发系统中特别是高并发的场景下,锁

无锁(lock-free)数据结构

 提到并行计算通常都会想到加锁,事实却并非如此,大多数并发是不需要加锁的.比如在不同电脑上运行的代码编辑器,两者并发运行不需要加锁.在一台电脑上同时运行的媒体播放放器和代码编辑器,两者并发运行不需要加锁(当然系统调用和进程调度是要加锁的).在同一个进程中运行多个线程,如果各自处理独立的事情也不需要加锁(当然系统调用.进程调度和内存分配是要加锁的).在以上这些情况里,各个并发实体之间没有共享数据,所以虽然并发运行但不需要加锁. 多线程并发运行时,虽然有共享数据,如果所有线程只是读取共享数据而不修改