武汉大学2015年数学分析考研试题

一. 计算题 ($40'$)

 

1. $\dps{\lim_{x\to 1}\frac{(x^n-1)(x^{n-1}-1)\cdots(x^{n-k+1}-1)}{(x^1-1)(x^2-1)\cdots (x^k-1)}}$.

 

2. $\dps{\lim_{x\to0}\frac{ \sqrt[n]{\cos \al x}-\sqrt[m]{\cos\beta x}}{\sin^2x}}$, 其中 $m,n$ 为正整数.

 

 

3. $\dps{\vlm{n}\sum_{k=1}^n \sez{\sqrt{1+\frac{k^2}{n^3}}-1}}$.

 

 

4. 设 $$\bex 0<x_n\leq x_{n+1}+\frac{1}{n^2}, \eex$$ 讨论极限 $\dps{\vlm{n}x_n}$ 的存在性.

 

 

二. ($20'$) 给定曲面 $$\bex F\sex{\frac{x-a}{z-c},\frac{y-b}{z-c}}=0, \eex$$ 其中 $a,b,c$ 为常数, $u=F(s,t)$ 二阶连续可微, 梯度处处不为零. 证明:

(1). 曲面的切平面过一定点.

(2). 函数 $z=z(x,y)$ 满足 $$\bex \frac{\p^2z}{\p x^2}\frac{\p^2z}{\p y^2}-\sex{\frac{\p^2z}{\p x\p y}}^2=0. \eex$$

 

 

三. ($20'$) 设 $$\bex a_n>0,\quad \vlm{n}n\sex{\frac{a_n}{a_{n+1}}-1}=\lm>0. \eex$$ 试证: $\dps{\vsm{n}(-1)^{n-1}a_n}$ 收敛.

 

 

四. ($15'$) 求极限 $$\bex \lim_{t\to +\infty}e^{-t} \int_0^t\int_0^t \frac{e^x-e^y}{x-y}\rd x\rd y, \eex$$ 或证明此极限不存在.

 

 

五.

(1). 求积分 $$\bex \iint_D |\cos (x+y)|\rd x\rd y, \eex$$ 其中 $$\bex D:\ 0\leq x\leq \pi,\ 0\leq y\leq \pi. \eex$$

(2). 设 $0<\al<1$, 求积分 $\dps{\int_0^1 f(t^\al)\rd t}$ 的上确界, 其中连续函数 $f$ 满足 $$\bex \int_0^1 |f(t)|\rd t\leq 1. \eex$$

 

 

六. ($25'$) 设 $$\bex f(t)=\int_1^{+\infty} \frac{\cos xt}{1+x^2}\rd x. \eex$$ 证明:

(1). 积分在 $\bbR$ 上一致收敛.

(2). $\dps{\vlm{t}f(t)=0}$.

(3). $f(t)$ 在 $\bbR$ 上一致连续.

(4). $\dps{\int_0^\pi f(t)\sin t\rd t\leq0}$.

(5). $\exists\ \xi \in [0,\pi],\st f(\xi)=0$. 

 

参考解答见家里蹲大学数学杂志.

时间: 2024-08-22 14:51:48

武汉大学2015年数学分析考研试题的相关文章

北京大学2015年数学分析考研试题

    1. 计算 $$\bex \lim_{x\to 0^+}\dfrac{\int_0^x e^{-t^2}\rd t-x}{\sin x-x}. \eex$$     2. 讨论广义积分 $\dps{\int_1^\infty \sez{\ln \sex{1+\dfrac{1}{x}}-\sin \dfrac{1}{x}}}$ 的敛散性.     3. 函数 $$\bex f(x,y)=\sedd{\ba{ll} \sex{1-\cos \dfrac{x^2}{y}}\sqrt{x^2+y

武汉大学2013年数学分析考研试题参考解答

来源 [尊重原有作者劳动成果]   一: 1:解:\[\because \underset{x\to 0}{\mathop{\lim }}\,\ln (1+x)=x\] \[\therefore \underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt[n]{1+x}-1}{\ln (1+x)}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sqrt[n]{1+x}-1}{x}=\underset{x\to 0}{\mat

[家里蹲大学数学杂志]第264期武汉大学2013年数学分析考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录  

浙江大学2015年数学分析考研试题

1. 求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$   2. 求 $$\bex \lim_{x\to 0^+}\sez{\frac{1}{x^5}\int_0^x e^{-t^2}\rd t +\frac{1}{3}\frac{1}{x^2}-\frac{1}{x^4}}. \eex$$     3. 设 $$\bex I(r)=\oint_L \dfrac{y

北京大学2017年数学分析考研试题

2017年北京大学硕士研究生数学分析真题 1.(10分) 证明:$$\lim_{n \to +\infty }\int_{0}^{\frac{\pi }{2}}\frac{\sin ^nx}{\sqrt{\pi -2x}}dx=0.$$ 2.(10分) 证明:$\sum_{n=1}^{\infty }\frac{1}{1+nx^2}\sin \frac{x}{n^\alpha }$在任何有限区间上一致收敛的充要条件是:$\alpha > \frac{1}{2}$. 3.(10分) 设$\sum_

北京大学2016年数学分析考研试题

本文来自TangSong.   1.($15'$) 用开覆盖定理证明闭区间上连续函数必一致连续. 2.$(15')$ $f(x)$ 是 $[a,b]$ 上的实函数.叙述关于Riemann和 \[\sum_{k=1}^n f(t_i)(x_i-x_{i-1})\] 的Cauchy准则 (不用证明) 并用你叙述的Cauchy准则证明闭区间上的单调函数可积. 3.$(15')$ $(a,b)$ 上的连续函数 $f(x)$ 有反函数. 证明反函数连续. 4.$(15')$ $f(x_1,x_2,x_3)

华中师范大学2011年数学分析考研试题参考解答

来源 [尊重原有作者劳动成果]   一. (1)证明:由于${{x}_{1}}\in (0,\frac{\pi }{2}),{{x}_{n+1}}=\sin {{x}_{n}}$,则${{x}_{n}}\in (0,\frac{\pi }{2}),n=1,2,\cdots $ 且${{x}_{n+1}}=\sin {{x}_{n}}\le {{x}_{n}}$ 于是$\{{{x}_{n}}\}$单调递减且${{x}_{n}}\in (0,\frac{\pi }{2})$ 由单调有界原理可知:$\

华东师范大学2017年数学分析考研试题

转自(赵江彦): http://www.math.org.cn/forum.php?mod=viewthread&tid=37148

[家里蹲大学数学杂志]第265期武汉大学2013年高等代数考研试题参考解答

因为还是有人到处传来传去,所以收回了, 要见请看: 家里蹲大学数学杂志目录