[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构

试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型.

 

解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_1}{\p m}}+\cfrac{\p p}{\p S}\cfrac{\p S}{\p t'} =\cfrac{\p p}{\p t'}-p'(\tau)\cfrac{\p u_1}{\p m}, \eex$$ 而 $$\bex \cfrac{-1}{p'(\tau)}\cfrac{\p p}{\p t'}+\cfrac{\p u_1}{\p m}=0.  \eex$$ 于是 (5. 33)-(5. 39) 为 $$\beex \bea \cfrac{-1}{p'(\tau)}\cfrac{\p p}{\p t'}+\cfrac{\p u_1}{\p m} &=0,\\ \cfrac{\mu_0}{\rho}\cfrac{\p H_2}{\p t'} +\mu_0H_2\cfrac{\p u_1}{\p m}-\mu_0H_1\cfrac{\p u_2}{\p m} &=0,\\ \cfrac{\mu_0}{\rho}\cfrac{\p H_3}{\p t'} +\mu_0H_3\cfrac{\p u_1}{\p m} -\mu_0H_1\cfrac{\ pu_3}{\p m} &=0,\\ \cfrac{\p u_1}{\p t'} +\cfrac{\p\rho}{\p m} +\mu_0H_2\cfrac{\p H_2}{\p m} +\mu_0H_3\cfrac{\p H_3}{\p m}&=F_1,\\ \cfrac{\p u_2}{\p t'}-\mu_0H_1\cfrac{\p H_2}{\p m}&=F_2,\\ \cfrac{\p u_3}{\p t'}-\mu_0H_1\cfrac{\p H_3}{\p m}&=F_3,\\ \cfrac{\p S}{\p t'}&=0; \eea \eeex$$ 其可化为 $$\bex A(U)\cfrac{\p U}{\p t'}+B(U)\cfrac{\p U}{\p m}=C, \eex$$ 其中 $$\beex \bea U&=(p,H_2,H_3,u_1,u_2,u_3,S)^T,\\ A(U)&=\diag\sex{\cfrac{-1}{p'(\tau)},\cfrac{\mu_0}{\rho},\cfrac{\mu_0}{\rho}, 1,1,1,1},\\ B(U)&=\sex{\ba{ccccccc} 0&0&0&1&0&0&0\\ 0&0&0&\mu_0H_2&-\mu_0H_1&0&0\\ 0&0&0&\mu_0H_3&0&-\mu_0H_1&0\\ 1&\mu_0H_2\mu_0H_3&0&0&0&0\\ 0&-\mu_0H_1&0&0&0&0&0\\ 0&0&-\mu_0H_1&0&0&0&0\\ 0&0&0&0&0&0&0 \ea},\\ C&=(0,0,0,F_1,F_2,F_3,0)^T. \eea \eeex$$ 故 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 是一阶对称双曲组. 

时间: 2024-10-17 02:43:22

[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构的相关文章

[物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构

试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p \rho}{\p x}+\rho \cfrac{\p u_1}{\p x}} +\cfrac{\p\rho}{\p S}\sex{\cfrac{\p S}{\p t}+u_1\cfrac{\p S}{\

[物理学与PDEs]第3章习题参考解答

[物理学与PDEs]第3章习题1 只有一个非零分量的磁场   [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量   [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程   [物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程   [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构   [物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构   [物理学与PDEs]

[物理学与PDEs]第1章习题12 Coulomb 规范下电磁场的标势、矢势满足的方程

试给出在 Coulomb 规范下, 电磁场的标势 $\phi$ 与矢势 ${\bf A}$ 所满足的方程.   解答: 真空中的 Maxwell 方程组为 $$\bee\label{1_10_12:eq} \bea \Div{\bf E}&=\cfrac{\rho}{\ve_0},\\ \rot{\bf E}&=-\cfrac{\p{\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf B}&=\mu_0\sex{\ve_0\cfrac{\

[物理学与PDEs]第2章习题11 Lagrange 形式的一维理想流体力学方程组在强间断线上的间断连接条件

对由第 10 题给出的 Lagrange 形式的一维理想流体力学方程组, 给出解在强间断线上应满足的间断连接条件 (假设体积力 $F\equiv 0$).   解答: $$\beex \bea \sez{\tau}\cfrac{\rd x}{\rd t}&=-[u],\\ [u]\cfrac{\rd x}{\rd t}&=[p],\\ \sez{e+\cfrac{u^2}{2}}\cfrac{\rd x}{\rd t}&=[pu]. \eea \eeex$$

[物理学与PDEs]第1章习题参考解答

[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势   [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势   [物理学与PDEs]第1章习题3 常场强下电势的定解问题   [物理学与PDEs]第1章习题4 偶极子的极限电势   [物理学与PDEs]第1章习题5 偶极子的电场强度   [物理学与PDEs]第1章习题6 无限长载流直线的磁场   [物理学与PDEs]第1章习题7 载流线圈的磁场   [物理学与PDEs]第1章习题8 磁场分布 $\ra$ 电流分布    [物理

[物理学与PDEs]第2章习题参考解答

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程   [物理学与PDEs]第2章习题2 质量力有势时的能量方程   [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题   [物理学与PDEs]第2章习题4 习题 3 的变分   [物理学与PDEs]第2章习题5 正应力的平均值   [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组   [物理学与PDEs]第2章习题7 一维不可压理想流体的求解   [物理学与PDEs]第2章习题8

[物理学与PDEs]第4章习题参考解答

[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程   [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程   [物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构   [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

[物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续.   解答:   (1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p

[物理学与PDEs]第1章习题5 偶极子的电场强度

试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{r_{P_0P}^3}{\bf r}_{P_0P}+\cfrac{q}{r_{P_1P}^3}{\bf r}_{P_1P}}\\ &=\cfrac{q}{4\pi \ve_0} \sez{ \sex{-\cfrac{1}{r_{P_0P}^3}+\cfrac{1}{r_{P_0P}^3}}{\bf r