MySQL数据库性能优化之SQL优化

这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为基础。
  优化目标

  1、减少 IO 次数

  IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是 SQL 优化中需要第一优先考虑,当然,也是收效最明显的优化手段。

  2、降低 CPU 计算

   除了 IO 瓶颈之外,SQL优化中需要考虑的就是 CPU 运算量的优化了。order by, group by,distinct … 都是消耗 CPU 的大户(这些操作基本上都是 CPU 处理内存中的数据比较运算)。当我们的 IO 优化做到一定阶段之后,降低 CPU 计算也就成为了我们 SQL 优化的重要目标

  优化方法

  1、改变 SQL 执行计划

   明确了优化目标之后,我们需要确定达到我们目标的方法。对于 SQL 语句来说,达到上述2个目标的方法其实只有一个,那就是改变 SQL 的执行计划,让他尽量“少走弯路”,尽量通过各种“捷径”来找到我们需要的数据,以达到 “减少 IO 次数” 和 “降低 CPU 计算” 的目标

  常见误区

  1、count(1)和count(primary_key) 优于 count(*)

   很多人为了统计记录条数,就使用 count(1) 和 count(primary_key) 而不是 count() ,他们认为这样性能更好,其实这是一个误区。对于有些场景,这样做可能性能会更差,应为数据库对 count() 计数操作做了一些特别的优化。

  2、count(column) 和 count(*) 是一样的

  这个误区甚至在很多的资深工程师或者是 DBA 中都普遍存在,很多人都会认为这是理所当然的。实际上,count(column) 和 count(*) 是一个完全不一样的操作,所代表的意义也完全不一样。

  count(column) 是表示结果集中有多少个column字段不为空的记录;

  count(*) 是表示整个结果集有多少条记录;

  3、select a,b from … 比 select a,b,c from … 可以让数据库访问更少的数据量

  这个误区主要存在于大量的开发人员中,主要原因是对数据库的存储原理不是太了解。

   实际上,大多数关系型数据库都是按照行(row)的方式存储,而数据存取操作都是以一个固定大小的IO单元(被称作 block 或者 page)为单位,一般为4KB,8KB… 大多数时候,每个IO单元中存储了多行,每行都是存储了该行的所有字段(lob等特殊类型字段除外)。

  所以,我们是取一个字段还是多个字段,实际上数据库在表中需要访问的数据量其实是一样的。

  当然,也有例外情况,那就是我们的这个查询在索引中就可以完成,也就是说当只取 a,b两个字段的时候,不需要回表,而c这个字段不在使用的索引中,需要回表取得其数据。在这样的情况下,二者的IO量会有较大差异。

  4、order by 一定需要排序操作

  我们知道索引数据实际上是有序的,如果我们的需要的数据和某个索引的顺序一致,而且我们的查询又通过这个索引来执行,那么数据库一般会省略排序操作,而直接将数据返回,因为数据库知道数据已经满足我们的排序需求了。

  实际上,利用索引来优化有排序需求的 SQL,是一个非常重要的优化手段

  5、执行计划中有 filesort 就会进行磁盘文件排序

  有这个误区其实并不能怪我们,而是因为 MySQL 开发者在用词方面的问题。filesort 是我们在使用 explain 命令查看一条 SQL 的执行计划的时候可能会看到在 “Extra” 一列显示的信息。

  实际上,只要一条 SQL 语句需要进行排序操作,都会显示“Using filesort”,这并不表示就会有文件排序操作。

本文出自seven的测试人生公众号最新内容请见作者的GitHub页:http://qaseven.github.io/

时间: 2024-11-08 20:21:50

MySQL数据库性能优化之SQL优化的相关文章

MySQL · 性能优化· CloudDBA SQL优化建议之统计信息获取

阿里云CloudDBA具有SQL优化建议功能,包括SQL重写建议和索引建议.SQL索引建议是帮助数据库优化器创造最佳执行路径,需要遵循数据库优化器的一系列规则来实现.CloudDBA需要首先计算表统计信息,是因为: 数据库优化器通常是基于代价寻找执行路径: SQL优化建议所针对的数据库不限于MySQL数据库,也不局限于某一个特定版本: 1. 基本原则 数据库统计信息在SQL优化起到重要作用.用来估算查询条件选择度的常见统计信息包括表统计信息和字段统计信息.DBA计算查询条件选择度或代价时经常通过

MySQL数据库性能优化之表结构优化

很多人都将<数据库设计范式>作为数据库表结构设计"圣经",认为只要按照这个范式需求设计,就能让设计出来的表结构足够优化,既能保证性能优异同时还能满足扩展性要求.殊不知,在N年前被奉为"圣经"的数据库设计3范式早就已经不完全适用了.这里我整理了一些比较常见的数据库表结构设计方面的优化技巧,希望对大家有用. 这是 MySQL数据库性能优化专题 系列的第二篇文章:MySQL 数据库性能优化之表结构优化 系列的第一篇文章:MySQL 数据库性能优化之缓存参数优化

MySQL数据库性能优化之缓存参数优化

在平时被问及最多的问题就是关于 MySQL 数据库性能优化方面的问题,所以最近打算写一个MySQL数据库性能优化方面的系列文章,希望对初中级 MySQL DBA 以及其他对 MySQL 性能优化感兴趣的朋友们有所帮助. 数据库属于 IO 密集型的应用程序,其主要职责就是数据的管理及存储工作.而我们知道,从内存中读取一个数据库的时间是微秒级别,而从一块普通硬盘上读取一个IO是在毫秒级别,二者相差3个数量级.所以,要优化数据库,首先第一步需要优化的就是 IO,尽可能将磁盘IO转化为内存IO.本文先从

Mysql数据库性能优化一_Mysql

今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数据库时(尤其是查表时的SQL语句),我们都需要注意数据操作的性能.这里,我们不会讲过多的SQL语句的优化,而只是针对MySQL这一Web应用最多的数据库. mysql的性能优化无法一蹴而就,必须一步一步慢慢来,从各个方面进行优化,最终性能就会有大的提升. Mysql数据库的优化技术 对mysql优化是

Mysql数据库性能优化三(分表、增量备份、还原)_MsSql

接上篇Mysql数据库性能优化二 对表进行水平划分           如果一个表的记录数太多了,比如上千万条,而且需要经常检索,那么我们就有必要化整为零了.如果我拆成100个表,那么每个表只有10万条记录.当然这需要数据在逻辑上可以划分.一个好的划分依据,有利于程序的简单实现,也可以充分利用水平分表的优势.比如系统界面上只提供按月查询的功能,那么把表按月拆分成12个,每个查询只查询一个表就够了.如果非要按照地域来分,即使把表拆的再小,查询还是要联合所有表来查,还不如不拆了.所以一个好的拆分依据

Mysql数据库性能优化三(分表、增量备份、还原)

接上篇Mysql数据库性能优化二 对表进行水平划分 如果一个表的记录数太多了,比如上千万条,而且需要经常检索,那么我们就有必要化整为零了.如果我拆成100个表,那么每个表只有10万条记录.当然这需要数据在逻辑上可以划分.一个好的划分依据,有利于程序的简单实现,也可以充分利用水平分表的优势.比如系统界面上只提供按月查询的功能,那么把表按月拆分成12个,每个查询只查询一个表就够了.如果非要按照地域来分,即使把表拆的再小,查询还是要联合所有表来查,还不如不拆了.所以一个好的拆分依据是 最重要的.关键字

优化MySQL数据库性能的方法

    本文探讨了提高MySQL 数据库性能的思路,并从8个方面给出了具体的解决方法. 1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小.例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了.同样的,如果可以的话,

优化MySQL数据库性能的八大“妙手”

本文探讨了提高MySQL 数据库性能的思路,并从8个方面给出了具体的解决方法. 1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小.例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了.同样的,如果可以的话,我们应该

mysql数据库的安装以及常见优化设置

原文:mysql数据库的安装以及常见优化设置   本文根据优才网课程整理,面向web开发者,内容以实用为主,专业DBA可以绕行. 如果你在大公司,可能有专门的DBA来做这些事情,如果你在一个小公司当架构师或者技术总监,或者你自己创业,那DBA的活你也得干了.咱们来讲一下基本的mysql安装和优化.   一: MYSQL安装和基本配置 在linux上安装,可以用包管理工具来安装,比较简单:RedHat 系列:yum -y install mysql mysql-server Debian系列:su

Mysql数据库性能优化二_Mysql

在上篇文章给大家介绍了mysql数据库性能优化一,今天继续接着上篇文章给大家介绍数据库性能优化相关知识.具体内容如下所示: 建立适当的索引 说起提高数据库性能,索引是最物美价廉的东西了.不用加内存,不用改程序,不用调sql,只要执行个正确的'create index',查询速度就可能提高百倍千倍,这可真有诱惑力.可是天下没有免费的午餐,查询速度的提高是以插入.更新.删除的速度为代价的,这些写操作,增加了大量的I/O. 是不是建立一个索引就能解决所有的问题?ename上没有建立索引会怎样? sel