Python中的defaultdict模块和namedtuple模块的简单入门指南_python

在Python中有一些内置的数据类型,比如int, str, list, tuple, dict等。Python的collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型:namedtuple, defaultdict, deque, Counter, OrderedDict等,其中defaultdict和namedtuple是两个很实用的扩展类型。defaultdict继承自dict,namedtuple继承自tuple。
一、defaultdict

 1. 简介

在使用Python原生的数据结构dict的时候,如果用d[key]这样的方式访问,当指定的key不存在时,是会抛出KeyError异常的。但是,如果使用defaultdict,只要你传入一个默认的工厂方法,那么请求一个不存在的key时, 便会调用这个工厂方法使用其结果来作为这个key的默认值。

defaultdict在使用的时候需要传一个工厂函数(function_factory),defaultdict(function_factory)会构建一个类似dict的对象,该对象具有默认值,默认值通过调用工厂函数生成。

2. 示例

下面给一个defaultdict的使用示例:
 

In [1]: from collections import defaultdict

In [2]: s = [('xiaoming', 99), ('wu', 69), ('zhangsan', 80), ('lisi', 96), ('wu', 100), ('yuan', 98), ('xiaoming', 89)]

In [3]: d = defaultdict(list)

In [4]: for k, v in s:
  ...:   d[k].append(v)
  ...:  

In [5]: d
Out[5]: defaultdict(<type 'list'>, {'lisi': [96], 'xiaoming': [99, 89], 'yuan': [98], 'zhangsan': [80], 'wu': [69, 100]})

In [6]: for k, v in d.items():
  ...:   print '%s: %s' % (k, v)
  ...:
lisi: [96]
xiaoming: [99, 89]
yuan: [98]
zhangsan: [80]
wu: [69, 100]

对Python比较熟悉的同学可以发现defaultdict(list)的用法和dict.setdefault(key, [])比较类似,上述代码使用setdefault实现如下:
 

s = [('xiaoming', 99), ('wu', 69), ('zhangsan', 80), ('lisi', 96), ('wu', 100), ('yuan', 98), ('xiaoming', 89)]
d = {}

for k, v in s:
  d.setdefault(k, []).append(v)

3. 原理

从以上的例子中,我们可以基本了defaultdict的用法,下面我们可以通过help(defaultdict)了解一下defaultdict的原理。通过Python console打印出的help信息来看,我们可以发现defaultdict具有默认值主要是通过__missing__方法实现的,如果工厂函数不为None,则通过工厂方法返回默认值,具体如下:
 

def __missing__(self, key):
  # Called by __getitem__ for missing key
  if self.default_factory is None:
    raise KeyError((key,))
  self[key] = value = self.default_factory()
  return value

从上面的说明中,我们可以发现一下几个需要注意的地方:

a). __missing__方法是在调用__getitem__方法发现KEY不存在时才调用的,所以,defaultdict也只会在使用d[key]或者d.__getitem__(key)的时候才会生成默认值;如果使用d.get(key)是不会返回默认值的,会出现KeyError;

b). defaultdict主要是通过__missing__方法实现,所以,我们也可以通过实现该方法来生成自己的defaultdict,代码入下:

In [1]: class MyDefaultDict(dict):
  ...:   def __missing__(self, key):
  ...:     self[key] = 'default'
  ...:     return 'default'
  ...:  

In [2]: my_default_dict = MyDefaultDict()

In [3]: my_default_dict
Out[3]: {}

In [4]: print my_default_dict['test']
default

In [5]: my_default_dict
Out[5]: {'test': 'default'}

4. 版本

defaultdict是在Python 2.5之后才加入的功能,在旧版本的Python中是不支持这个功能的,不过,知道了它的原理,我们可以自己实现一个defaultdict。

# http://code.activestate.com/recipes/523034/
try:
  from collections import defaultdict
except:
  class defaultdict(dict):

    def __init__(self, default_factory=None, *a, **kw):
      if (default_factory is not None and
        not hasattr(default_factory, '__call__')):
        raise TypeError('first argument must be callable')
      dict.__init__(self, *a, **kw)
      self.default_factory = default_factory

    def __getitem__(self, key):
      try:
        return dict.__getitem__(self, key)
      except KeyError:
        return self.__missing__(key)

    def __missing__(self, key):
      if self.default_factory is None:
        raise KeyError(key)
      self[key] = value = self.default_factory()
      return value

    def __reduce__(self):
      if self.default_factory is None:
        args = tuple()
      else:
        args = self.default_factory,
      return type(self), args, None, None, self.items()

    def copy(self):
      return self.__copy__()

    def __copy__(self):
      return type(self)(self.default_factory, self)

    def __deepcopy__(self, memo):
      import copy
      return type(self)(self.default_factory, copy.deepcopy(self.items()))

    def __repr__(self):
      return 'defaultdict(%s, %s)' % (self.default_factory, dict.__repr__(self))

二、namedtuple

namedtuple主要用来产生可以使用名称来访问元素的数据对象,通常用来增强代码的可读性,在访问一些tuple类型的数据时尤其好用。其实,在大部分时候你应该使用namedtuple替代tuple,这样可以让你的代码更容易读懂,更加pythonic。举个例子:

from collections import namedtuple

# 变量名和namedtuple中的第一个参数一般保持一致,但也可以不一样
Student = namedtuple('Student', 'id name score')
# 或者 Student = namedtuple('Student', ['id', 'name', 'score'])

students = [(1, 'Wu', 90), (2, 'Xing', 89), (3, 'Yuan', 98), (4, 'Wang', 95)]

for s in students:
  stu = Student._make(s)
  print stu

# Output:
# Student(id=1, name='Wu', score=90)
# Student(id=2, name='Xing', score=89)
# Student(id=3, name='Yuan', score=98)
# Student(id=4, name='Wang', score=95)

在上面的例子中,Student就是一个namedtuple,它和tuple的使用方法一样,可以通过index直接取,而且是只读的。这种方式比tuple容易理解多了,可以很清楚的知道每个值代表的含义。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索python
数据类型
namedtuple dict、python tuple转dict、python tuple dict、list tuple dict set、python tuple to dict,以便于您获取更多的相关知识。

时间: 2024-11-02 14:11:48

Python中的defaultdict模块和namedtuple模块的简单入门指南_python的相关文章

python中使用sys模板和logging模块获取行号和函数名的方法_python

对于python,这几天一直有两个问题在困扰我:1.python中没办法直接取得当前的行号和函数名.这是有人在论坛里提出的问题,底下一群人只是在猜测python为什么不像__file__一样提供__line__和__func__,但是却最终也没有找到解决方案.2.如果一个函数在不知道自己名字的情况下,怎么才能递归调用自己.这是我一个同事问我的,其实也是获取函数名,但是当时也是回答不出来. 但是今晚!所有的问题都有了答案.一切还要从我用python的logging模块说起,logging中的for

将Python中的数据存储到系统本地的简单方法_python

有很多时候,我们会在python的运行过程中得到一些重要的变量,比如一个数据量很庞大的dict.而且,后面的某些程序也会用到这个dict,那么我们就最好把它存储到本地来,然后下次调用的时候,先读取本地的文件,导入到字典类型中,调用即可.这样就免去了重新学习这个字典的过程.那么在python中如何把数据存储到本地呢? 我们用到的是python中的pickle模块. 如下: import pickle data1 = {'a': [1, 2.0, 3, 4+6j], 'b': ('string',

解析Python中的变量、引用、拷贝和作用域的问题_python

在Python中,变量是没有类型的,这和以往看到的大部分编辑语言都不一样.在使用变量的时候,不需要提前声明,只需要给这个变量赋值即可.但是,当用变量的时候,必须要给这个变量赋值:如果只写一个变量,而没有赋值,那么Python认为这个变量没有定义.如下:   >>> a Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'a

用Python中的__slots__缓存资源以节省内存开销的方法_python

我们曾经提到,Oyster.com的Python web服务器怎样利用一个巨大的Python dicts(hash table),缓存大量的静态资源.我们最近在Image类中,用仅仅一行__slots__代码,让每个6G内存占用的服务进程(共4个),省出超过2G来. 这是其中一个服务器在部署代码前后的截图: 我们alloc了大约一百万个类似如下class的实例:   class Image(object):     def __init__(self, id, caption, url):   

python中print的不换行即时输出的快速解决方法_python

关于Python2.x和3.x带来的print不换行的问题:昨天有发过推文,利用end = 定义,解决了横向的小问题,但是由于屏幕显示的问题,若字符串长度过大,则会引起不便.两个或多个print做分割的情况下,如何保持依然横向输出,一般的是在print尾部加上逗号(,)但是在3.x下,则不行,需要使用end = "(something)",some signs like , . ; 'also you can put a word or str in"". Exam

在Python中利用Into包整洁地进行数据迁移的教程_python

动机 我们花费大量的时间将数据从普通的交换格式(比如CSV),迁移到像数组.数据库或者二进制存储等高效的计算格式.更糟糕的是,许多人没有将数据迁移到高效的格式,因为他们不知道怎么(或者不能)为他们的工具管理特定的迁移方法. 你所选择的数据格式很重要,它会强烈地影响程序性能(经验规律表明会有10倍的差距),以及那些轻易使用和理解你数据的人. 当提倡Blaze项目时,我经常说:"Blaze能帮助你查询各种格式的数据."这实际上是假设你能够将数据转换成指定的格式. 进入into项目 into

Python中实现两个字典(dict)合并的方法_python

本文实例讲述了Python中实现两个字典(dict)合并的方法,分享给大家供大家参考.具体方法如下: 现有两个字典dict如下: dict1={1:[1,11,111],2:[2,22,222]} dict2={3:[3,33,333],4:[4,44,444]} 合并两个字典得到类似: {1:[1,11,111],2:[2,22,222],3:[3,33,333],4:[4,44,444]} 方法1: dictMerged1=dict(dict1.items()+dict2.items())

在Python中使用cookielib和urllib2配合PyQuery抓取网页信息_python

刚才好无聊,突然想起来之前做一个课表的点子,于是百度了起来. 刚开始,我是这样想的:在写微信墙的时候,用到了urllib2[两行代码抓网页],那么就只剩下解析html了.于是百度:python解析html.发现一篇好文章,其中介绍到了pyQuery. pyQuery 是 jQuery 在 Python 中的实现,能够以 jQuery 的语法來操作解析 HTML 文档.使用前需要安装,Mac安装方法如下: sudo easy_install pyquery OK!安装好了! 我们来试一试吧: fr

使用C语言扩展Python程序的简单入门指引_python

一.简介 Python是一门功能强大的高级脚本语言,它的强大不仅表现在其自身的功能上,而且还表现在其良好的可扩展性上,正因如此,Python已经开始受到越来越多人的青睐,并且被屡屡成功地应用于各类大型软件系统的开发过程中. 与其它普通脚本语言有所不同,Python程序员可以借助Python语言提供的API,使用C或者C++来对Python进行功能性扩展,从而即可以利用Python方便灵活的语法和功能,又可以获得与C或者C++几乎相同的执行性能.执行速度慢是几乎所有脚本语言都具有的共性,也是倍受人