为什么要写《机器学习实践应用》这本书


预售地址:
https://item.jd.com/12114501.html

历经了10个月,《机器学习实践应用》这本书终于面世了。首先呢,因为我的工作比较忙,只能抽一些周末或者是下班以后的时间进行写作,另外书的发布流程是一个漫长的过程。所以当这本书出版的时候,我感到熟悉又陌生,熟悉是因为书中的内容经过了多次校对已经印到我的脑子中了,陌生是距离刚开始写这本书已经过去接近一年,对于当时的状态有一些陌生。我因为记忆力不好(智商偏低),所以从小就养成了经常总结事情的毛病,今天刚好赶上快周末,并且《机器学习实践应用》已经上架预售,所以就写了这篇笔记对这本书发布的流程进行总结。

首先就是为什么要写这本书?其实从小都没想过我会写一个这么多字的东西,硕士毕业的时候写3万字论文都快把我逼疯了,更何况是20万字的一本书。而且我从小语文就不太好,高考语文也是最低的一科。但是因为记性不好,所以我一直特别喜欢记笔记,特别是后来在CSDN上写博客开始记录和分享我的一些学习成果,我觉得能有更多的人跟我一起讨论一件事是非常之有趣的。加上最近两年入职阿里,写了很多机器学习相关的文章,得到了一些出版行业的朋友的关注。所以索性,把之前的学习笔记和已经写好的机器学习相关的文章做一个整合,于是就形成了《机器学习实践应用》。

另外,也有一些比较宏观的原因,比如我觉得市面上很多机器学习相关的书都偏理论,但是真正搞机器学习的大部分人群是一些算法的使用者,这部分同学可能不需要对每一种算法在数学层面的推导有很深的见解,大家需要一些偏业务的引导。基于这个原因,我想有一本书可以帮助大家弥补算法和业务之间的gap。但是因为能力有限,不知道是帮忙缩小了这个gap,还是扩大了,哈哈。

最后就是我觉得出一本书是一件很酷的事情,纸质的书会让我自己看算法的时候变的很舒服,而且现在不是流行一句话“阿猫阿狗都能出书了”,我也想当次阿猫阿狗。写书可以强迫你去更多的思考,去看更丰富的资料,无意间也可以提高自己的姿势。总结起来就是一句话,“生活在这个繁杂浮躁的社会,能花10个月的精力专注的做一件事情是一个很酷的行为”(认真脸)。

对于后期的计划,用稿费来一次说走就走的旅行,几个候选集:印度、去西班牙看皇马的比赛、去一次非洲,我还没想清楚。上班之前给自己定了一个计划,每年用业余时间去做一件酷的事情,上一件是出版一本书,已经实现了,下一件事情正在有条不紊的进行。最后的最后,忘了推荐《机器学习实践应用》这本书,那就不推荐了吧(上面那几个地方没稿费我也去的起,哈哈)。

内容简介:
  机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度等多门学科,专门研究计算机怎样模拟或实现人类的学习行为。机器学习是人工智能的核心,是使计算机具有智能的根本途径。
  本书通过对机器学习的背景知识、算法流程、相关工具、实践案例以及知识图谱等内容的讲解,全面介绍了机器学习的理论基础和实践应用。书中涉及机器学习领域的多个典型算法,并详细给出了机器学习的算法流程。
  本书适合任何有一定数据功底和编程基础的读者阅读。通过阅读本书,读者不仅可以了解机器学习的理论基础,也可以参照一些典型的应用案例拓展自己的专业技能。同时,本书也适合计算机相关专业的学生以及对人工智能和机器学习感兴趣的读者阅读。

目录:
第1部分 背景知识
第1章 机器学习概述 3
1.1 背景 3
1.2 发展现状 6
1.2.1 数据现状 6
1.2.2 机器学习算法现状 8
1.3 机器学习基本概念 12
1.3.1 机器学习流程 12
1.3.2 数据源结构 14
1.3.3 算法分类 16
1.3.4 过拟合问题 18
1.3.5 结果评估 20
1.4 本章小结 22
第2部分 算法流程
第2章 场景解析 25
2.1 数据探查 25
2.2 场景抽象 27
2.3 算法选择 29
2.4 本章小结 31
第3章 数据预处理 32
3.1 采样 32
3.1.1 随机采样 32
3.1.2 系统采样 34
3.1.3 分层采样 35
3.2 归一化 36
3.3 去除噪声 39
3.4 数据过滤 42
3.5 本章小结 43
第4章 特征工程 44
4.1 特征抽象 44
4.2 特征重要性评估 49
4.3 特征衍生 53
4.4 特征降维 57
4.4.1 特征降维的基本概念 57
4.4.2 主成分分析 59
4.5 本章小结 62
第5章 机器学习算法——常规算法 63
5.1 分类算法 63
5.1.1 K近邻 63
5.1.2 朴素贝叶斯 68
5.1.3 逻辑回归 74
5.1.4 支持向量机 81
5.1.5 随机森林 87
5.2 聚类算法 94
5.2.1 K-means 97
5.2.2 DBSCAN 103
5.3 回归算法 109
5.4 文本分析算法 112
5.4.1 分词算法——Hmm 112
5.4.2 TF-IDF 118
5.4.3 LDA 122
5.5 推荐类算法 127
5.6 关系图算法 133
5.6.1 标签传播 134
5.6.2 Dijkstra最短路径 138
5.7 本章小结 145
第6章 机器学习算法——深度学习 146
6.1 深度学习概述 146
6.1.1 深度学习的发展 147
6.1.2 深度学习算法与传统
算法的比较 148
6.2 深度学习的常见结构 152
6.2.1 深度神经网络 152
6.2.2 卷积神经网络 153
6.2.3 循环神经网络 156
6.3 本章小结 157
第3部分 工具介绍
第7章 常见机器学习工具介绍 161
7.1 概述 161
7.2 单机版机器学习工具 163
7.2.1 SPSS 163
7.2.2 R语言 167
7.2.3 工具对比 172
7.3 开源分布式机器学习工具 172
7.3.1 Spark MLib 172
7.3.2 TensorFlow 179
7.4 企业级云机器学习工具 190
7.4.1 亚马逊AWS ML 191
7.4.2 阿里云机器学习PAI 196
7.5 本章小结 205
第4部分 实战应用
第8章 业务解决方案 209
8.1 心脏病预测 209
8.1.1 场景解析 209
8.1.2 实验搭建 211
8.1.3 小结 216
8.2 商品推荐系统 216
8.2.1 场景解析 217
8.2.2 实验搭建 218
8.2.3 小结 220
8.3 金融风控案例 220
8.3.1 场景解析 221
8.3.2 实验搭建 222
8.3.3 小结 225
8.4 新闻文本分析 225
8.4.1 场景解析 225
8.4.2 实验搭建 226
8.4.3 小结 230
8.5 农业贷款发放预测 230
8.5.1 场景解析 230
8.5.2 实验搭建 232
8.5.3 小结 236
8.6 雾霾天气成因分析 236
8.6.1 场景解析 237
8.6.2 实验搭建 238
8.6.3 小结 243
8.7 图片识别 243
8.7.1 场景解析 243
8.7.2 实验搭建 245
8.7.3 小结 253
8.8 本章小结 253
第5部分 知识图谱
第9章 知识图谱 257
9.1 未来数据采集 257
9.2 知识图谱的概述 259
9.3 知识图谱开源
工具 261
9.4 本章小结 264
参考文献 265

与作者交流,请关注公众号:

时间: 2025-01-01 12:43:19

为什么要写《机器学习实践应用》这本书的相关文章

《机器学习实践应用》书中源代码

下载地址:https://github.com/jimenbian/GarvinBook 注:本书代码部分参考了互联网资源,已在书中注明引用. 本项目代码严格遵循MIT开源协议,请大家用于参考和学习用途,谢谢. 文件夹名对应书中章节代码. 购书链接: https://item.jd.com/12114501.html 本书简介 <机器学习实践应用>是人民出版社于2017年7月出版的图书,作者李博.书中通过将机器学习算法与实际业务场景结合,让读者可以快速入门并使用高深的算法.在本书中,对整个数据

《Python机器学习实践指南》——导读

前言 Python机器学习实践指南 机器学习正在迅速成为数据驱动型世界的一个必备模块.许多不同的领域如机器人.医学.零售和出版等,都需要依赖这门技术.在这本书中,你将学习如何一步步构建真实的机器学习应用程序. 通过易于理解的项目,你将学习如何处理各种类型的数据,如何以及何时应用不同的机器学习技术,包括监督学习和无监督学习. 本书中的每个项目都同时提供了教学和实践.例如,你将学习如何使用聚类技术来发现低价的机票,以及如何使用线性回归找到一间便宜的公寓.本书以通俗易懂.简洁明了的方式,教你如何使用机

《Python机器学习实践指南》——第1章 Python机器学习的生态系统

第1章 Python机器学习的生态系统 Python机器学习实践指南 机器学习正在迅速改变我们的世界.作为人工智能的核心,我们几乎每天都会读到机器学习如何改变日常的生活.一些人认为它会带领我们进入一个风格奇异的高科技乌托邦:而另一些人认为我们正迈向一个高科技天启时代,将与窃取我们工作机会的机器人和无人机敢死队进行持久的战争.不过,虽然权威专家们可能会喜欢讨论这些夸张的未来,但更为平凡的现实是,机器学习正在快速成为我们日常生活的固定装备.随着我们微小但循序渐进地改进自身与计算机以及周围世界之间的互

《Python机器学习实践指南》——1.1 数据科学/机器学习的工作流程

1.1 数据科学/机器学习的工作流程 打造机器学习的应用程序,与标准的工程范例在许多方面都是类似的,不过有一个非常重要的方法有所不同:需要将数据作为原材料来处理.数据项目成功与否,很大程度上依赖于你所获数据的质量,以及它是如何被处理的.由于数据的使用属于数据科学的领域,理解数据科学的工作流程对于我们也有所帮助:整个过程要按照图1-1中的顺序,完成六个步骤:获取,检查和探索,清理和准备,建模,评估和最后的部署. 在这个过程中,还经常需要绕回到之前的步骤,例如检查和准备数据,或者是评估和建模,但图1

《Python机器学习实践指南》——1.2 Python库和功能

1.2 Python库和功能 现在,我们已经对数据科学工作流的每一步有了初步的理解,下面来看看在每一步中,存在哪些有用的Python库和功能可供选择. 1.2.1 获取 访问数据常见的方式之一是通过REST风格的API接口,需要知道的库是Python Request库.它被称为给人类使用的HTTP,为API的交互提供了一个整洁和简单的方式. 让我们来看一个使用Requests进行交互的例子,它从GitHub的API中拉取数据.在这里,我们将对该API进行调用,并请求某个用户的starred库列表

《Python机器学习实践指南》——1.3 设置机器学习的环境

1.3 设置机器学习的环境 本章已经介绍了一些可以通过pip(Python的包管理器)单独安装的库.不过,我强烈建议你安装预打包的解决方案,例如Continuum's Anaconda Python发行版.这是一个单一的可执行程序,包含几乎所有需要的软件包和依赖者.而且,因为这个发行版是针对Python科学栈的用户,它本质上是一个一劳永逸的解决方案. Anaconda也包括软件包管理器,使得包的更新变得如此简单. 只需简单地键入conda update ,那么库就会被更新到最近的稳定版本.

《Python机器学习实践指南》——1.4 小结

1.4 小结 在本章中,我们介绍了数据科学/机器学习的工作流程.我们学习了如何让数据一步步地通过流水线的每个阶段,从最初的获取一直到最终的部署.本章还涵盖了Python科学栈中最重要的一些功能库及其关键特性. 现在,我们将利用这方面的知识和经验,开始创造独特的.有价值的机器学习应用程序.在下一章,你将看到如何运用回归模型来发现一个便宜的公寓,让我们开始吧!

机器学习算法与Python实践之(五)k均值聚类(k-means)

       机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了.        机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先

机器学习与R语言(原书第2版)》一1.4 实践中的机器学习

本节书摘来自华章出版社<机器学习与R语言(原书第2版)>一书中的第1章,第1.4节,美] 布雷特·兰茨(Brett Lantz) 著,李洪成 许金炜 李舰 译更多章节内容可以访问"华章计算机"公众号查看. 1.4 实践中的机器学习 到目前为止,我们已经讲述了理论上机器学习是如何工作的.为了把机器学习应用到真实世界的任务中,我们将采用由5个步骤构成的过程.不管你手头是何种任务,任何机器学习算法都能由下面这些步骤来实施:1)数据收集:数据收集步骤包括收集算法用来生成可行动知识的