你应该知道的浮点数基础

文章转载自:http://blog.jobbole.com/86371/

一个有趣的实验

本文从一个有趣而诡异的实验开始。最早这个例子博主是从 Stackoverflow上的一个问题中看到的。为了提高可读性,博主这里做了改写,简化成了以下两段代码:

#include <iostream>
#include <string>
using namespace std;

int main() {
    const float x=1.1;
    const float z=1.123;
    float y=x;
    for(int j=0;j<90000000;j++)
    {
        y*=x;
        y/=z;
        y+=0.1f;
        y-=0.1f;
    }
    return 0;
}
#include <iostream>
#include <string>
using namespace std;

int main() {
    const float x=1.1;
    const float z=1.123;
    float y=x;
    for(int j=0;j<90000000;j++)
    {
        y*=x;
        y/=z;
        y+=0;
        y-=0;
    }
    return 0;
}

上面两段代码的唯一差别就是第一段代码中y+=0.1f,而第二段代码中是y+=0。由于y会先加后减同样一个数值,照理说这两段代码的作用和效率应该是完全一样的,当然也是没有任何逻辑意义的。假设现在我告诉你:其中一段代码的效率要比另一段慢7倍。想必读者会认为一定是y+=0.1f的那段慢,毕竟它和y+=0相比看上去要多一些运算。但是,实验结果,却出乎意料, y+=0的那段代码比y+=0.1f足足慢了7倍。 。世界观被颠覆了有木有?博主是在自己的Macbook Pro上进行的测试,有兴趣的读者也可以在自己的笔记本上试试。(只要是支持SSE2指令集的CPU都会有相似的结果)。

shell> g++ code1.c -o test1
shell> g++ code2.c -o test2
shell> time ./test1

real    0m1.490s
user    0m1.483s
sys     0m0.003s

shell> time ./test2

real    0m9.895s
user    0m9.871s
sys     0m0.009s

当然 原文中的投票最高的回答解释的非常好,但博主第一次看的时候是一头雾水,因为大部分基础知识已经还给大学老师了。所以,本着知其然还要知其所以然的态度,博主做了一个详尽的分析和思路整理过程。也希望读者能够从0开始解释这个诡异现象的原因。

复习浮点数的二进制转换

现在让我们复习大学计算机基础课程。如果你熟练掌握了浮点数向二进制表达式转换的方法,那么你可以跳过这节。
我们先来看下浮点数二进制表达的三个组成部分。

三个主要成分是:

  • Sign(1bit):表示浮点数是正数还是负数。0表示正数,1表示负数
  • Exponent(8bits):指数部分。类似于科学技术法中的M*10^N中的N,只不过这里是以2为底数而不是10。需要注意的是,这部分中是以2^7-1即127,也即01111111代表2^0,转换时需要根据127作偏移调整。
  • Mantissa(23bits):基数部分。浮点数具体数值的实际表示。

下面我们来看个实际例子来解释下转换过程。
Step 1 改写整数部分
以数值5.2为例。先不考虑指数部分,我们先单纯的将十进制数改写成二进制。
整数部分很简单,5.即101.。

Step 2 改写小数部分
小数部分我们相当于拆成是2^-1一直到2^-N的和。例如:
0.2 = 0.125+0.0625+0.007825+0.00390625即2^-3+2^-4+2^-7+2^-8….,也即.00110011001100110011

Step 3 规格化
现在我们已经有了这么一串二进制101.00110011001100110011。然后我们要将它规格化,也叫Normalize。其实原理很简单就是保证小数点前只有一个bit。于是我们就得到了以下表示:1.0100110011001100110011 * 2^2。到此为止我们已经把改写工作完成,接下来就是要把bit填充到三个组成部分中去了。

Step 4 填充
指数部分(Exponent):之前说过需要以127作为偏移量调整。因此2的2次方,指数部分偏移成2+127即129,表示成10000001填入。
整数部分(Mantissa):除了简单的填入外,需要特别解释的地方是1.010011中的整数部分1在填充时被舍去了。因为规格化后的数值整部部分总是为1。那大家可能有疑问了,省略整数部分后岂不是1.010011和0.010011就混淆了么?其实并不会,如果你仔细看下后者:会发现他并不是一个规格化的二进制,可以改写成1.0011 * 2^-2。所以省略小数点前的一个bit不会造成任何两个浮点数的混淆。
具体填充后的结果见下图

练习:如果想考验自己是否充分理解这节内容的话,可以随便写一个浮点数尝试转换。通过 浮点二进制转换工具可以验证答案。

什么是Denormalized Number

了解完浮点数的表达以后,不难看出浮点数的精度和指数范围有很大关系。最低不能低过2^-7-1最高不能高过2^8-1(其中剔除了指数部分全0喝全1的特殊情况)。如果超出表达范围那么不得不舍弃末尾的那些小数,我们成为overflow和underflow。甚至有时舍弃都无法表示,例如当我们要表示一个:1.00001111*2^-7这样的超小数值的时候就无法用规格化数值表示,如果不想点其他办法的话,CPU内部就只能把它当做0来处理。那么,这样做有什么问题呢?最显然易见的一种副作用就是:当多次做低精度浮点数舍弃的后,就会出现除数为0的exception,导致异常。当然精度失准严重起来也可以要人命,以下这个事件摘自wikipedia

On 25 February 1991, a loss of significance in a MIM-104 Patriot missile battery prevented it intercepting an incoming Scud missile in Dhahran, Saudi Arabia, contributing to the death of 28 soldiers from the U.S. Army’s 14th Quartermaster Detachment.[25] See also: Failure at Dhahran

于是乎就出现了Denormalized Number(后称非规格化浮点)。他和规格浮点的区别在于,规格浮点约定小数点前一位默认是1。而非规格浮点约定小数点前一位可以为0,这样小数精度就相当于多了最多2^22范围。

但是,精度的提升是有代价的。由于CPU硬件只支持,或者默认对一个32bit的二进制使用规格化解码。因此需要支持32bit非规格数值的转码和计算的话,需要额外的编码标识,也就是需要额外的硬件或者软件层面的支持。以下是wiki上的两端摘抄,说明了非规格化计算的效率非常低。> 一般来说,由软件对非规格化浮点数进行处理将带来极大的性能损失,而由硬件处理的情况会稍好一些,但在多数现代处理器上这样的操作仍是缓慢的。极端情况下,规格化浮点数操作可能比硬件支持的非规格化浮点数操作快100倍。

For example when using NVIDIA’s CUDA platform, on gaming cards, calculations with double precision take 3 to 24 times longer to complete than calculations using single precision.

如果要解释为什么有如此大的性能损耗,那就要需要涉及电路设计了,超出了博主的知识范围。当然万能的wiki也是有答案的,有兴趣的读者可以自行查阅。

回到实验

总上面的分析中我们得出了以下结论:

  • 浮点数表示范围有限,精度受限于指数和底数部分的长度,超过精度的小数部分将会被舍弃(underflow)
  • 为了表示更高精度的浮点数,出现了非规格化浮点数,但是他的计算成本非常高。

于是我们就可以发现通过几十上百次的循环后,y中存放的数值无限接近于零。CPU将他表示为精度更高的非规格化浮点。而当y+0.1f时为了保留跟重要的底数部分,之后无限接近0(也即y之前存的数值)被舍弃,当y-0.1f后,y又退化为了规格化浮点数。并且之后的每次y*x和y/z时,CPU都执行的是规划化浮点运算。
而当y+0,由于加上0值后的y仍然可以被表示为非规格化浮点,因此整个循环的四次运算中CPU都会使用非规格浮点计算,效率就大大降低了。

其他

当然,也有在程序内部也是有办法控制非规范化浮点的使用的。在相关程序的上下文中加上fesetenv(FE_DFL_DISABLE_SSE_DENORMS_ENV);就可以迫使CPU放弃使用非规范化浮点计算,提高性能。我们用这种办法修改上面实验中的代码后,y+=0的效率就和y+=0.1f就一样了。甚至还比y+=0.1f更快了些,世界观又端正了不是么:) 修改后的代码如下

#include <iostream>
#include <string>
#include <fenv.h>
using namespace std;

int main() {
    fesetenv(FE_DFL_DISABLE_SSE_DENORMS_ENV);
    const float x=1.1;
    const float z=1.123;
    float y=x;
    for(int j=0;j<90000000;j++)
    {
        y*=x;
        y/=z;
        y+=0;
        y-=0;
    }
    return 0;
}
时间: 2024-09-19 09:42:55

你应该知道的浮点数基础的相关文章

Swift语言指南(三)--语言基础之整数和浮点数

原文:Swift语言指南(三)--语言基础之整数和浮点数   整数   整数指没有小数的整数,如42,-23.整数可以是有符号的(正数,零,负数),也可以是无符号的(正数,零). Swift提供了8,16,32,64位形式的有符号和无符号的整数,这些整数遵循与C语言相似的命名规则.如8位无符号整数的类型为UInt8,32位有符号整数的类型为Int32,和Swift语言的其它类型一样,这些整型命名以大写字母开头.   整数的边界 你可以通过min或max属性为每一个整数类型指定一个最小值或最大值:

基础野:细说浮点数

Brief   本来只打算理解JS中0.1 + 0.2 == 0.30000000000000004的原因,但发现自己对计算机的数字表示和运算十分陌生,于是只好恶补一下.  本篇我们一起来探讨一下基础--浮点数的表示方式和加减乘除运算.   在深入前有两点我们要明确的:   1. 在同等位数的情况下,浮点数可表示的数值范围比整数的大:   2. 浮点数无法精确表示其数值范围内的所有数值,只能精确表示可用科学计数法m*2e表示的数值而已:      (如0.5的科学计数法是2-1,则可被精确存储:

Swift语言指南(三) Swift语言基础:整数和浮点数

整数 整数指没有小数的整数,如42,-23.整数可以是有符号的(正数,零,负数),也可以是无符号的(正数,零). Swift提供了8,16,32,64位形式的有符号和无符号的整数,这些整数遵循与C语言相似的命名规则.如8位无符号整数的类型为UInt8,32位有符号整数的类型为Int32,和Swift语言的其它类型一样,这些整型命名以大写字母开头. 整数的边界 你可以通过min或max属性为每一个整数类型指定一个最小值或最大值: 1 let 最小值 = UInt8.min // 最小值 等于 0,

PHP中浮点数计算比较及取整不准确的解决方法_php基础

浮点数计算结果比较一则浮点数计算例子如下: 复制代码 代码如下: $a = 0.2+0.7; $b = 0.9; var_dump($a == $b); 打印出的结果是:bool(false).也就是说在这里 0.2+0.7 的计算结果与 0.9 并不相等,这显然是有违我们的常识的. 对此问题,PHP官方手册曾又说明:显然简单的十进制分数如 0.2 不能在不丢失一点点精度的情况下转换为内部二进制的格式.这和一个事实有关,那就是不可能精确的用有限位数表达某些十进制分数.例如,十进制的 1/3 变成

基础04:移码和浮点数的二进制表示

本文介绍移码以及浮点数的二进制表示.其中浮点数的二进制表示比较难理解,需要一点点数学知识. 标准移码 在一般情况下,移码就是将补码的符号位取反. -118D = -1110110B (真值) -118D表示-118的十进制:-1110110B表示二进制. 原码: 11110110 反码: 10001001 补码: 10001010 移码: 00001010 符号位取反的移码,可以等同于偏移值为128的移码,称为标准移码. 即-118D+128D = 10001010B + 10000000B =

Java核心技术 卷Ⅰ 基础知识(原书第10版)

Java核心技术系列 Java核心技术 卷Ⅰ 基础知识 (原书第10版) Core Java Volume I-Fundamentals (10th Edition) [美] 凯S.霍斯特曼(Cay S. Horstmann) 著 周立新 陈 波 叶乃文 邝劲筠 杜永萍 译 图书在版编目(CIP)数据 Java核心技术 卷Ⅰ 基础知识(原书第10版) / (美)凯S. 霍斯特曼(Cay S. Horstmann)著:周立新等译. -北京:机械工业出版社,2016.8 (Java核心技术系列) 书

神经网络和机器学习基础入门分享

         最近在做知识图谱实体对齐和属性对齐中,简单用了下Word2vec谷歌开源代码.Word2vec是一个将单词表征成向量的形式,它可以把文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度.         Word2vec采用CBOW(Continuous Bag-Of-Words Model,连续词袋模型)和Skip-Gram(Continuous Skip-GramModel)两种模型,涉及到神经网络和深度学习的一些知识.故这周给学弟和

前端技术系列课程(No.2) &amp;#8211; HTML/CSS/JavaScript基础

本次课为系列课程的第二课,由舒克带来的"HTML/CSS/JavaScript"基础知识,课程中着重介绍了HTML的语义化,因为语义化是前端工程师最容易理解又最难掌握的,比如何时使用什么样的标签,这取决于前端工程师对标签和页面内容的理解.要注意频道首页和详情页是不同的,频道首页中的信息比较琐碎,详情页中的内容更像"文章",因此内容的语义是有差别的.这一点需要注意. http://www.slideshare.net/lijing00333/htmlcssjs 在HT

无线标记语言(WML)基础之WMLScript基础

WML Script是属于无限应用协议WAP应用层的一部分,使用它可以向WML卡片组和卡片中添加客户端的处理逻辑,目前最新的版本是1.1版.WML Script1.1是在欧洲计算机制造商协议会制定的ECMAScript脚本语言的基础上,经过修改和优化而指定的.它能够更好的支持诸如移动电话类的乍带宽通信设备,在WML编程中使用WML Script可以有效的增强客户端应用的灵活性,而且,我们也可以把WML Script作为一个工具使用,开发出功能强大的WAP网络应用和无限网页.本章我们将详细讲解WM