Spark源码分析之四:Stage提交

        各位看官,上一篇《Spark源码分析之Stage划分》详细讲述了Spark中Stage的划分,下面,我们进入第三个阶段--Stage提交。

        Stage提交阶段的主要目的就一个,就是将每个Stage生成一组Task,即TaskSet,其处理流程如下图所示:

        与Stage划分阶段一样,我们还是从handleJobSubmitted()方法入手,在Stage划分阶段,包括最好的ResultStage和前面的若干ShuffleMapStage均已生成,那么顺理成章的下一步便是Stage的提交。在handleJobSubmitted()方法的最后两行代码,便是Stage提交的处理。代码如下:

// 提交最后一个stage
    submitStage(finalStage)

    // 提交其他正在等待的stage
    submitWaitingStages()

        从代码我们可以看出,Stage提交的逻辑顺序,是由后往前,即先提交最后一个finalStage,即ResultStage,然后再提交其parent stages,但是实际物理顺序是否如此呢?我们首先看下finalStage的提交,方法submitStage()代码如下:

/** Submits stage, but first recursively submits any missing parents. */
  // 提交stage,但是首先要递归的提交所有的missing父stage
  private def submitStage(stage: Stage) {

    // 根据stage获取jobId
    val jobId = activeJobForStage(stage)

    if (jobId.isDefined) {// 如果jobId已定义

      // 记录Debug日志信息:submitStage(stage)
      logDebug("submitStage(" + stage + ")")

      // 如果在waitingStages、runningStages或
      // failedStages任意一个中,不予处理

      // 既不在waitingStages中,也不在runningStages中,还不在failedStages中
      // 说明未处理过
      if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {

        // 调用getMissingParentStages()方法,获取stage还没有提交的parent
        val missing = getMissingParentStages(stage).sortBy(_.id)

        logDebug("missing: " + missing)
        if (missing.isEmpty) {
          // 如果missing为空,说明是没有parent的stage或者其parent stages已提交,
          // 则调用submitMissingTasks()方法,提交tasks
          logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
          submitMissingTasks(stage, jobId.get)
        } else {
          // 否则,说明其parent还没有提交,递归,循环missing,提交每个stage
          for (parent <- missing) {
            submitStage(parent)
          }

          // 将该stage加入到waitingStages中
          waitingStages += stage
        }
      }
    } else {
      // 放弃该Stage
      abortStage(stage, "No active job for stage " + stage.id, None)
    }
  }

        代码逻辑比较简单。根据stage获取到jobId,如果jobId未定义,说明该stage不属于明确的Job,则调用abortStage()方法放弃该stage。如果jobId已定义的话,则需要判断该stage属于waitingStages、runningStages、failedStages中任意一个,则该stage忽略,不被处理。顾名思义,waitingStages为等待处理的stages,spark采取由后往前的顺序处理stage提交,即先处理child stage,然后再处理parent
stage,所以位于waitingStages中的stage,由于其child stage尚未处理,所以必须等待,runningStages为正在运行的stages,正在运行意味着已经提交了,所以无需再提交,而最后的failedStages就是失败的stages,既然已经失败了,再提交也还是会失败,徒劳无益啊~

        此时,如果stage不位于上述三个数据结构中,则可以继续执行提交流程。接下来该怎么做呢?

        首先调用getMissingParentStages()方法,获取stage还没有提交的parent,即missing;如果missing为空,说明该stage要么没有parent stage,要么其parent stages都已被提交,此时该stage就可以被提交,用于提交的方法submitMissingTasks()我们稍后分析。

        如果missing不为空,则说明该stage还存在尚未被提交的parent stages,那么,我们就需要遍历missing,循环提交每个stage,并将该stage添加到waitingStages中,等待其parent stages都被提交后再被提交。

        我们先看下这个missing是如何获取的。进入getMissingParentStages()方法,代码如下:

private def getMissingParentStages(stage: Stage): List[Stage] = {

    // 存储尚未提交的parent stages,用于最后结果的返回
    val missing = new HashSet[Stage]

    // 已被处理的RDD集合
    val visited = new HashSet[RDD[_]]

    // We are manually maintaining a stack here to prevent StackOverflowError
    // caused by recursively visiting
    // 待处理RDD栈,后入先出
    val waitingForVisit = new Stack[RDD[_]]

    // 定义函数visit
    def visit(rdd: RDD[_]) {

      // 通过visited判断rdd是否已处理
      if (!visited(rdd)) {
        // 添加到visited,下次不会再处理
        visited += rdd

        val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
        if (rddHasUncachedPartitions) {
          // 循环rdd的dependencies
          for (dep <- rdd.dependencies) {
            dep match {
              // 宽依赖
              case shufDep: ShuffleDependency[_, _, _] =>
                // 调用getShuffleMapStage,获取ShuffleMapStage
                val mapStage = getShuffleMapStage(shufDep, stage.firstJobId)
                if (!mapStage.isAvailable) {
                  missing += mapStage
                }
              // 窄依赖,直接将RDD压入waitingForVisit栈
              case narrowDep: NarrowDependency[_] =>
                waitingForVisit.push(narrowDep.rdd)
            }
          }
        }
      }
    }

    // 将stage的rdd压入到waitingForVisit顶部
    waitingForVisit.push(stage.rdd)
    // 循环处理waitingForVisit,对弹出的每个rdd调用函数visit
    while (waitingForVisit.nonEmpty) {
      visit(waitingForVisit.pop())
    }

    // 返回stage列表
    missing.toList
  }

        有没有些似曾相识的感觉呢?对了,和《Spark源码分析之Stage划分》一文中getParentStages()方法、getAncestorShuffleDependencies()方法结构类似,也是定义了三个数据结构和一个visit()方法。三个数据结构分别是:

        1、missing:HashSet[Stage]类型,存储尚未提交的parent stages,用于最后结果的返回;

        2、visited:HashSet[RDD[_]]类型,已被处理的RDD集合,位于其中的RDD不会被重复处理;

        3、waitingForVisit:Stack[RDD[_]]类型,等待被处理的RDD栈,后入先出。

        visit()方法的处理逻辑也比较简单,大致如下:

        通过RDD是否在visited中判断RDD是否已处理,若未被处理,添加到visited中,然后循环rdd的dependencies,如果是宽依赖ShuffleDependency,调用getShuffleMapStage(),获取ShuffleMapStage(此次调用则是直接取出已生成的stage,因为划分阶段已将stage全部生成,拿来主义即可),判断该stage的isAvailable标志位,若为false,则说明该stage未被提交过,加入到missing集合,如果是窄依赖NarrowDependency,直接将RDD压入waitingForVisit栈,等待后续处理,因为窄依赖的RDD同属于同一个stage,加入waitingForVisit只是为了后续继续沿着DAG图继续往上处理。

        那么,整个missing的获取就一目了然,将final stage即ResultStage的RDD压入到waitingForVisit顶部,循环处理即可得到missing。

        至此,各位可能有个疑问,这个ShuffleMapStage的isAvailable为什么能决定该stage是否已被提交呢?卖个关子,后续再分析。

        submitStage()方法已分析完毕,go on,我们再回归到handleJobSubmitted()方法,在调用submitStage()方法提交finalStage之后,实际上只是将最原始的parent stage提交,其它child stage均存储在了waitingStages中,那么,接下来,我们就要调用submitWaitingStages()方法提交其中的stage。代码如下:

/**
   * Check for waiting or failed stages which are now eligible for resubmission.
   * Ordinarily run on every iteration of the event loop.
   */
  private def submitWaitingStages() {
    // TODO: We might want to run this less often, when we are sure that something has become
    // runnable that wasn't before.
    logTrace("Checking for newly runnable parent stages")
    logTrace("running: " + runningStages)
    logTrace("waiting: " + waitingStages)
    logTrace("failed: " + failedStages)

    // 将waitingStages转换为数组
    val waitingStagesCopy = waitingStages.toArray

    // 清空waitingStages
    waitingStages.clear()

    // 循环waitingStagesCopy,挨个调用submitStage()方法进行提交
    for (stage <- waitingStagesCopy.sortBy(_.firstJobId)) {
      submitStage(stage)
    }
  }

        很简单,既然stages的顺序已经梳理正确,将waitingStages转换为数组waitingStagesCopy,针对每个stage挨个调用submitStage()方法进行提交即可。

        还记得我卖的那个关子吗?ShuffleMapStage的isAvailable为什么能决定该stage是否已被提交呢?现在来解开这个谜团。首先,看下ShuffleMapStage的isAvailable是如何定义的,在ShuffleMapStage中,代码如下:

/**
   * Returns true if the map stage is ready, i.e. all partitions have shuffle outputs.
   * This should be the same as `outputLocs.contains(Nil)`.
   * 如果map stage已就绪的话返回true,即所有分区均有shuffle输出。这个将会和outputLocs.contains保持一致。
   */
  def isAvailable: Boolean = _numAvailableOutputs == numPartitions

        它是通过判断_numAvailableOutputs和numPartitions是否相等来确定stage是否已被提交(或者说准备就绪可以提交is ready)的,而numPartitions很好理解,就是stage中的全部分区数目,那么_numAvailableOutputs是什么呢?

private[this] var _numAvailableOutputs: Int = 0

/**
   * Number of partitions that have shuffle outputs.
   * When this reaches [[numPartitions]], this map stage is ready.
   * This should be kept consistent as `outputLocs.filter(!_.isEmpty).size`.
   *
   * 拥有shuffle的分区数量。
   * 当这个numAvailableOutputs达到numPartitions时,这个map stage也就准备好了。
   * 这个应与outputLocs.filter(!_.isEmpty).size保持一致
   */
  def numAvailableOutputs: Int = _numAvailableOutputs

        可以看出,_numAvailableOutputs就是拥有shuffle outputs的分区数量,当这个numAvailableOutputs达到numPartitions时,这个map stage也就准备好了。

        那么这个_numAvailableOutputs开始时默认为0,它是在何时被赋值的呢?通篇看完ShuffleMapStage的源码,只有两个方法对_numAvailableOutputs的值做修改,代码如下:

def addOutputLoc(partition: Int, status: MapStatus): Unit = {
    val prevList = outputLocs(partition)
    outputLocs(partition) = status :: prevList
    if (prevList == Nil) {
      _numAvailableOutputs += 1
    }
  }

  def removeOutputLoc(partition: Int, bmAddress: BlockManagerId): Unit = {
    val prevList = outputLocs(partition)
    val newList = prevList.filterNot(_.location == bmAddress)
    outputLocs(partition) = newList
    if (prevList != Nil && newList == Nil) {
      _numAvailableOutputs -= 1
    }
  }

        什么时候调用的这个addOutputLoc()方法呢?答案就在DAGScheduler的newOrUsedShuffleStage()方法中。方法主要逻辑如下:

if (mapOutputTracker.containsShuffle(shuffleDep.shuffleId)) {
      // 如果mapOutputTracker中存在

      // 根据shuffleId从mapOutputTracker中获取序列化的多个MapOutputStatus对象
      val serLocs = mapOutputTracker.getSerializedMapOutputStatuses(shuffleDep.shuffleId)

      // 反序列化
      val locs = MapOutputTracker.deserializeMapStatuses(serLocs)

      // 循环
      (0 until locs.length).foreach { i =>
        if (locs(i) ne null) {
          // locs(i) will be null if missing
          // 将
          stage.addOutputLoc(i, locs(i))
        }
      }
    } else {
      // 如果mapOutputTracker中不存在,注册一个

      // Kind of ugly: need to register RDDs with the cache and map output tracker here
      // since we can't do it in the RDD constructor because # of partitions is unknown
      logInfo("Registering RDD " + rdd.id + " (" + rdd.getCreationSite + ")")
      // 注册的内容为
      // 1、根据shuffleDep获取的shuffleId;
      // 2、rdd中分区的个数
      mapOutputTracker.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length)
    }

        这个方法在stage划分过程中,第一轮被调用,此时mapOutputTracker中并没有注册shuffle相关信息,所以走的是else分支,调用mapOutputTracker的registerShuffle()方法注册shuffle,而在stage提交过程中,第二轮被调用,此时shuffle已在mapOutputTracker中注册,则会根据shuffleId从mapOutputTracker中获取序列化的多个MapOutputStatus对象,反序列化并循环调用stage的addOutputLoc()方法,更新stage的outputLocs,并累加_numAvailableOutputs,至此,关子卖完,再有疑问,后续再慢慢分析吧。

        到了这里,就不得不分析下真正提交stage的方法submitMissingTasks()了。莫慌,慢慢看,代码如下:

/** Called when stage's parents are available and we can now do its task. */
  private def submitMissingTasks(stage: Stage, jobId: Int) {
    logDebug("submitMissingTasks(" + stage + ")")

    // Get our pending tasks and remember them in our pendingTasks entry
    // 清空stage的pendingPartitions
    stage.pendingPartitions.clear()

    // First figure out the indexes of partition ids to compute.
    // 首先确定该stage需要计算的分区ID索引
    val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()

    // Create internal accumulators if the stage has no accumulators initialized.
    // Reset internal accumulators only if this stage is not partially submitted
    // Otherwise, we may override existing accumulator values from some tasks
    if (stage.internalAccumulators.isEmpty || stage.numPartitions == partitionsToCompute.size) {
      stage.resetInternalAccumulators()
    }

    // Use the scheduling pool, job group, description, etc. from an ActiveJob associated
    // with this Stage
    val properties = jobIdToActiveJob(jobId).properties

    // 将stage加入到runningStages中
    runningStages += stage

    // SparkListenerStageSubmitted should be posted before testing whether tasks are
    // serializable. If tasks are not serializable, a SparkListenerStageCompleted event
    // will be posted, which should always come after a corresponding SparkListenerStageSubmitted
    // event.
    // 开启一个stage时,需要调用outputCommitCoordinator的stageStart()方法,
    stage match {
      // 如果为ShuffleMapStage
      case s: ShuffleMapStage =>
        outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
      // 如果为ResultStage
      case s: ResultStage =>
        outputCommitCoordinator.stageStart(
          stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
    }

    // 创建一个Map:taskIdToLocations,存储的是id->Seq[TaskLocation]的映射关系
    // 对stage中指定RDD的每个分区获取位置信息,映射成id->Seq[TaskLocation]的关系
    val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
      stage match {
        // 如果是ShuffleMapStage
        case s: ShuffleMapStage =>
          partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
        // 如果是ResultStage
        case s: ResultStage =>
          val job = s.activeJob.get
          partitionsToCompute.map { id =>
            val p = s.partitions(id)
            (id, getPreferredLocs(stage.rdd, p))
          }.toMap
      }
    } catch {
      case NonFatal(e) =>
        stage.makeNewStageAttempt(partitionsToCompute.size)
        listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
        abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
        runningStages -= stage
        return
    }

    // 标记新的stage attempt
    stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
    // 发送一个SparkListenerStageSubmitted事件
    listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))

    // TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times.
    // Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast
    // the serialized copy of the RDD and for each task we will deserialize it, which means each
    // task gets a different copy of the RDD. This provides stronger isolation between tasks that
    // might modify state of objects referenced in their closures. This is necessary in Hadoop
    // where the JobConf/Configuration object is not thread-safe.
    // 对stage进行序列化,如果是ShuffleMapStage,序列化rdd和shuffleDep,如果是ResultStage,序列化rdd和func
    var taskBinary: Broadcast[Array[Byte]] = null
    try {
      // For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
      // 对于ShuffleMapTask,序列化并广播,广播的是rdd和shuffleDep
      // For ResultTask, serialize and broadcast (rdd, func).
      // 对于ResultTask,序列化并广播,广播的是rdd和func
      val taskBinaryBytes: Array[Byte] = stage match {
        case stage: ShuffleMapStage =>
          // 序列化ShuffleMapStage
          closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array()
        case stage: ResultStage =>
          // 序列化ResultStage
          closureSerializer.serialize((stage.rdd, stage.func): AnyRef).array()
      }

      // 通过sc广播序列化的task
      taskBinary = sc.broadcast(taskBinaryBytes)

    } catch {
      // In the case of a failure during serialization, abort the stage.
      case e: NotSerializableException =>
        abortStage(stage, "Task not serializable: " + e.toString, Some(e))
        runningStages -= stage

        // Abort execution
        return
      case NonFatal(e) =>
        abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}", Some(e))
        runningStages -= stage
        return
    }

    // 针对stage的每个分区构造task,形成tasks:ShuffleMapStage生成ShuffleMapTasks,ResultStage生成ResultTasks
    val tasks: Seq[Task[_]] = try {
      stage match {
        // 如果是ShuffleMapStage
        case stage: ShuffleMapStage =>
          partitionsToCompute.map { id =>
            // 位置信息
            val locs = taskIdToLocations(id)
            val part = stage.rdd.partitions(id)
            // 创建ShuffleMapTask,其中包括位置信息
            new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
              taskBinary, part, locs, stage.internalAccumulators)
          }
        // 如果是ResultStage
        case stage: ResultStage =>
          val job = stage.activeJob.get
          partitionsToCompute.map { id =>
            val p: Int = stage.partitions(id)
            val part = stage.rdd.partitions(p)
            val locs = taskIdToLocations(id)
            // 创建ResultTask
            new ResultTask(stage.id, stage.latestInfo.attemptId,
              taskBinary, part, locs, id, stage.internalAccumulators)
          }
      }
    } catch {
      case NonFatal(e) =>
        abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
        runningStages -= stage
        return
    }

    // 如果存在tasks,则利用taskScheduler.submitTasks()提交task,否则标记stage已完成
    if (tasks.size > 0) {
      logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")

      // 赋值pendingPartitions
      stage.pendingPartitions ++= tasks.map(_.partitionId)

      logDebug("New pending partitions: " + stage.pendingPartitions)

      // 利用taskScheduler.submitTasks()提交task
      taskScheduler.submitTasks(new TaskSet(
        tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
      // 记录提交时间
      stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
    } else {
      // Because we posted SparkListenerStageSubmitted earlier, we should mark
      // the stage as completed here in case there are no tasks to run
      // 标记stage已完成
      markStageAsFinished(stage, None)

      val debugString = stage match {
        case stage: ShuffleMapStage =>
          s"Stage ${stage} is actually done; " +
            s"(available: ${stage.isAvailable}," +
            s"available outputs: ${stage.numAvailableOutputs}," +
            s"partitions: ${stage.numPartitions})"
        case stage : ResultStage =>
          s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})"
      }
      logDebug(debugString)
    }
  }

        submitMissingTasks()方法,最主要的就是针对每个stage生成一组Tasks,即TaskSet,并调用TaskScheduler的submitTasks()方法提交tasks。它主要做了以下几件事情:

        1、清空stage的pendingPartitions;

        2、首先确定该stage需要计算的分区ID索引,保存至partitionsToCompute;

        3、将stage加入到runningStages中,标记stage正在运行,与上面的阐述对应;

        4、开启一个stage时,需要调用outputCommitCoordinator的stageStart()方法;

        5、创建一个Map:taskIdToLocations,存储的是id->Seq[TaskLocation]的映射关系,并对stage中指定RDD的每个分区获取位置信息,映射成id->Seq[TaskLocation]的关系;

        6、标记新的stage attempt,并发送一个SparkListenerStageSubmitted事件;

        7、对stage进行序列化并广播,如果是ShuffleMapStage,序列化rdd和shuffleDep,如果是ResultStage,序列化rdd和func;

        8、最重要的,针对stage的每个分区构造task,形成tasks:ShuffleMapStage生成ShuffleMapTasks,ResultStage生成ResultTasks;

        9、如果存在tasks,则利用taskScheduler.submitTasks()提交task,否则标记stage已完成。

        至此,stage提交的主体流程已全部分析完毕,后续的Task调度与执行留待以后分析,而stage提交部分细节或者遗漏之处,特别是task生成时的部分细节,也留待以后再细细琢磨吧~

        晚安!

时间: 2024-11-03 18:30:34

Spark源码分析之四:Stage提交的相关文章

Spark源码分析之五:Task调度(一)

        在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段:         1.Job的调度模型与运行反馈:         2.Stage划分:         3.Stage提交:对应TaskSet的生成.         Stage划分与提交阶段主要是由DAGScheduler完成的,而DAGScheduler负责Job的逻辑调度,主要职责也即DAG图的分解,按照RDD间是否为shuffle dependency,将整个Job划分

Spark源码分析之七:Task运行(一)

        在Task调度相关的两篇文章<Spark源码分析之五:Task调度(一)>与<Spark源码分析之六:Task调度(二)>中,我们大致了解了Task调度相关的主要逻辑,并且在Task调度逻辑的最后,CoarseGrainedSchedulerBackend的内部类DriverEndpoint中的makeOffers()方法的最后,我们通过调用TaskSchedulerImpl的resourceOffers()方法,得到了TaskDescription序列的序列Seq

Spark源码分析之二:Job的调度模型与运行反馈

        在<Spark源码分析之Job提交运行总流程概述>一文中,我们提到了,Job提交与运行的第一阶段Stage划分与提交,可以分为三个阶段:         1.Job的调度模型与运行反馈:         2.Stage划分:         3.Stage提交:对应TaskSet的生成.         今天,我们就结合源码来分析下第一个小阶段:Job的调度模型与运行反馈.         首先由DAGScheduler负责将Job提交到事件队列eventProcessLoop

Spark源码分析之三:Stage划分

        继上篇<Spark源码分析之Job的调度模型与运行反馈>之后,我们继续来看第二阶段--Stage划分.         Stage划分的大体流程如下图所示:         前面提到,对于JobSubmitted事件,我们通过调用DAGScheduler的handleJobSubmitted()方法来处理.那么我们先来看下代码: // 处理Job提交的函数 private[scheduler] def handleJobSubmitted(jobId: Int, finalRD

Spark源码分析之六:Task调度(二)

        话说在<Spark源码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这个方法针对接收到的ReviveOffers事件进行处理.代码如下: // Make fake resource offers on all executors     // 在所有的executors上提供假的资源(抽象的资源,也就是资源的对象信息,我是这么理解的)     private def makeOffers() {  

Spark源码分析 -- TaskScheduler

Spark在设计上将DAGScheduler和TaskScheduler完全解耦合, 所以在资源管理和task调度上可以有更多的方案 现在支持, LocalSheduler, ClusterScheduler, MesosScheduler, YarnClusterScheduler 先分析ClusterScheduler, 即standalone的Spark集群上, 因为比较单纯不涉及其他的系统, 看看Spark的任务是如何被执行的   private var taskScheduler: T

Spark源码分析:多种部署方式之间的区别与联系(1)

<http://www.aliyun.com/zixun/aggregation/13383.html">Spark源码分析:多种部署方式之间的区别与联系(1)> <Spark源码分析:多种部署方式之间的区别与联系(2)> 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN-..不同部署方式的后台处理进程是不一样的,但是如果我们从代码的角度来看,其实流程都差不多. 从代码中,我们可以得知其实Spark的部署

Spark源码分析 – Shuffle

参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉   Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memory中的数据, 按partition进行划分, 然后各自存成小文件, 这样当buffer不断的spill的时候, 就会产生大量的小文件  所以Hadoop后面直到reduce之前做的所有的事情其实就是不断的merge, 基于文件的多路并归排序, 在map端的将相同partition的merge到

Spark源码分析 – SparkContext

Spark源码分析之-scheduler模块  这位写的非常好, 让我对Spark的源码分析, 变的轻松了许多  这里自己再梳理一遍 先看一个简单的spark操作, val sc = new SparkContext(--) val textFile = sc.textFile("README.md") textFile.filter(line => line.contains("Spark")).count()   1. SparkContext 这是Spa