《构建实时机器学习系统》一3.3 利用 Pandas 分析实时股票报价数据

3.3 利用 Pandas 分析实时股票报价数据

熟悉一项软件的最好方法就是通过示例来亲自使用它。这里将会通过分析苹果公司 2015 年 8 月 3 日秒级股票价格的数据来熟悉 Pandas 的用法。建议通过Python 笔记本或交互式窗口的方法来进行下面的操作。
首先,需要导入相关的模块,在导入Pandas模块的同时,我们还用到了Datetime模块。Datetime模块的主要功能是对时间、日期等数据进行处理,导入命令如下:

import pandas as pd
from datetime import datetime

3.3.1 外部数据导入

这里将会导入 2015 年 8 月 3 日苹果公司的秒级股票交易数据,不过,相应的原始数据需要稍做清理才能使用,而这正好符合本章的学习要点。
首先,用Pandas 的read_csv 模块直接从 csv 文件中导入数据。原始数据一共有六列,分别存有原始时间戳、每秒开盘价、最高价、最低价、收盘价和成交量信息。可以通过names 参数将这些名字赋给处理好的数据,导入命令如下:

data = pd.read_csv("aapl.csv",
                   names = ["timestamp_raw","Open","High",
                            "Low","Close","Volume"],
                   index_col = False)
print(type(data))

上面的type(data)可以打印出当前数据对象的类。可以看到,这里data 对象的类名为DataFrame,是 Pandas 中最基本的数据形态。
导入数据之后,当然还要看看我们最感兴趣的数据长什么样,在交互窗口中打印前 5 行和后 5 行。这里需要用到DataFrame 的head 和tail 函数,命令如下:

data.head(5)
data.tail(5)

可以注意到记录中的股价数值为原始股价乘以 10000。
原始数据中的时间记录为每天距离格林威治标准时间的秒数乘以 1000,为增加可读性,需要将数据先还原。这里先将data 对象的索引变为处理后的时间标记,并调用 DataFrame.index 域,示例代码如下:

UNIX_EPOCH = datetime(1970, 1, 1, 0, 0)
def ConvertTime(timestamp_raw, date):
    """ 该函数会将原始的时间转化为所需的datetime格式 """
    delta = datetime.utcfromtimestamp(timestamp_raw) - UNIX_EPOCH
    return date + delta

data.index = map(lambda x: ConvertTime(x, datetime(2015, 8, 3)),
                 data["timestamp_raw"]/1000)

这个时候timestamp_raw 一列将不再有用,可以删掉它。这里调用了DataFrame.drop()函数来实现该功能:

data = data.drop("timestamp_raw",1)

3.3.2 数据分析基本操作

导入数据并做初步清理之后,可以调用 DataFrame 对象的函数对其进行各种基本的修改和描述。DataFrame的很多操作都是通过调用对象的函数来进行的,具体有哪些函数呢?可以通过如下dir()命令来查看:

dir(data)

经过查看可以得知,大多数的常用函数都已经包含在内了,如 mean(均值)、max(最大值)、min(最小值)。例如,为了求得该数据集每一列的均值,我们可以进行如下操作,求最大值、最小值的操作也与此类似:

data.mean()

同时还可以调用 describe 函数直接产生常用的描述性统计量,命令如下:

data.describe()

我们进行数据分析时,往往需要对数据的假设进行检验。例如美股交易时间是从美国东部时间的早上 9:30 到下午 3:30,但是很多主流股票还具有盘前和盘后交易。盘前和盘后交易时间中估价波动较大,成交量较小,对此本书不进行研讨。在进行其他分析之前,我们需要检视一下所有数据记录的时间范围。上面的统计量操作也可以在 data.index 上执行。这里DataFrame.index 相当于一个 Series 对象,命令如下:

data.index.min()
data.index.max()

可以看到,交易时间其实包括了盘前和盘后的大量时间。在实际交易策略中,我们往往只会在正常交易时间进行交易,所以需要对数据按照时间进行拆分,只保留正常交易时间的数据,完成该项操作非常容易,命令如下:

data_trading_hour = data["201508030930":"201508031529"]

3.3.3 可视化操作

进行了简单的数据清理之后,就可以开始进行可视化操作了,首先通过目测的方式来查看数据的分布。Pandas 进行可视化操作需要依赖于 Matplolib 模块,这里首先导入对应的模块,导入命令如下:

import matplotlib
from matplotlib import pyplot as plt

Matplotlib 自带的画图风格比较僵硬,需要改改,同时为了向 R 致敬,这里设置画图风格为 R ggplot 风,设置命令如下:

matplotlib.style.use('ggplot')

画图查看每一秒的收盘价。这里只需要对 Series 类的变量调用plot 函数,即可得到
图3-1所示的股价走势图,调用命令如下:

data_trading_hour["Close"].plot()
plt.show()

同时,也有人可能对成交量感兴趣。根据格兰杰因果检验等研究,成交量对股价变化也有影响。每秒成交量是什么样的分布?可以通过下面的命令做出直方图。只需要调用 Series 类对象的plot.hist 函数即可:

data_trading_hour["Volume"].plot.hist()
plt.show()

直方图画出来之后,读者将会发现大多数观测集中在了较小的范围之内,但是有若干秒的交易量是其他时候的数倍。为了更深入地研究,可以画出时序图做进一步的观察,画时序图的命令如下,得到的图形如图3-2所示。

data_trading_hour["Volume"].describe()
data_trading_hour["Volume"].plot()
plt.show()

果然正如我们所假设的,中午时分有大单交易发生。

3.3.4 秒级收盘价变化率初探

当然,对于实时量化交易,我们最感兴趣的还是每秒的变化率。那么下面我们就来看看股价变化的分布情况。为了到相邻时间点股价的变化率,我们可以通过调用diff 函数来实现,得到的变化率序列也是一个 Series 类对象。就如3.3.3节一样,我们可以将变化率可视化,得到图3-3。调用diff 函数的命令如下:

data_trading_hour["Close"].diff().plot.hist()
plt.show()

change = data_trading_hour["Close"].diff()/data_trading_hour["Close"]
change.plot()
plt.show()

现在回到出发点,我们分析和可视化数据是为了在后文中发掘出可能的量化交易策略。我们常常听说股价会追涨杀跌,在这种模式中的股价会按照趋势继续上涨或下跌。我们也听说过可能会均值反转,在这种模式中的股价会在具有了大幅波动之后回归平均值。那么,秒级数据又有什么样的趋势模式呢?可以通过shift 函数对时间序列进行错位,并且通过corr 函数计算两个时间序列之间的相关性系数。绝对值较大的相关性系数代表前后时间中股价变化的相关程度较高;绝对值近乎为 0则代表前后时间中股票变化相关线性程度低。shift 函数命令如下:

change.shift(1).corr(change)
change.shift(2).corr(change)

通过图3-4可以看到,前后一秒股价变化率的相关性系数为 -0.167,这样的相关性对于金融数据来说已经非常显著了。但是这一相关性在两秒的间隔之后迅速衰减到了-0.034,所以这就要求我们的实时交易策略系统必须具有非常低的延迟,才能抓住这样的先机,得到超额的收益。
其实,在时间序列研究中,已经有了一套比较完备的描述性统计量,自相关性(auto-correlation)就是这样一个例子。MatplotLib 的 acorr 函数可以自动对时间序列做出自相关图,acorr 函数的命令如下:

plt.acorr(change[1:], lw = 2)
plt.show()

图3-4所示为AAPL 股价变化率自相关系数柱状图,其横轴的每个刻度均代表时间序列的错位大小,1 表示时间序列与错位 1 秒的自身进行相关性计算;2表示时间序列与错位 2 秒的自身进行相关性计算。以此类推。该图纵轴代表计算的相关性系数大小。在错位为 0 时,时间序列和自身完美相关,这里的相关性系数为 1。
从图3-4可以看出,苹果公司当天股价变化率的自相关性随着时间错位的增加而递减。前一秒股价变化率和后一秒股价呈负相关关系,这暗示我们在短期股票交易中,股价变化具有均值回归的模式。在均值回归模式中,如果股票出现大幅上涨或下跌,那么在后面的短时间内,可能会出现反向的股价波动,以减弱前期的变化。

时间: 2024-11-01 23:56:52

《构建实时机器学习系统》一3.3 利用 Pandas 分析实时股票报价数据的相关文章

《构建实时机器学习系统》一 导读

前 言 机器学习从业人员的艰难选择 作为机器学习从业人员,如果今天突然被公司或学校开除,你能养活自己吗?邻居老大妈买土鸡蛋不买神经网络模型,东门老大爷认识郭德纲不认识朴素贝叶斯,面容姣好的"翠花"只认房产证不认 Zookeeper.即使你身怀绝技,有着远大的抱负,机器学习应用难以变现也是事实.为了能维持生计,众多机器学习从业人员只能进入大公司.大组织.但限于流程和已有的体制,在这样的工作环境下,他们很难完全发挥自己的潜能. 太多的好朋友,在脱离体制和大公司的时候豪情万丈,吃散伙饭时和战

《构建实时机器学习系统》一第2章 实时监督式机器学习 2.1 什么是监督式机器学习

第2章 实时监督式机器学习 2.1 什么是监督式机器学习 监督式机器学习旨在利用训练集数据,建立因变量和自变量之间的函数映射关系.如果用X 代表自变量,Y 代表因变量,f 代表映射函数,b 代表映射函数的参数,那么监督式机器学习的任务就是找到恰当的函数f 和参数 ,让下面的映射尽量符合要求: y=f (x;b,e) 这里e为实际情况中的随机扰动项. 下面就来具体看看在监督式机器学习中,因变量.自变量和预测函数的含义. (1)因变量 因变量是我们试图通过机器学习模型预测的变量,在实际应用中它往往无

《构建实时机器学习系统》一3.4 数据分析的三个要点

3.4 数据分析的三个要点 本书后面的章节中将会以前面发现的均值回归的性质为依托,设计实时机器学习交易策略进行交易.好多读者看到这里可能已经跃跃欲试,等不及要开始搭建服务器开始赚他一个亿了.但是在这之前我们需要总结一下在开展机器学习工作前期关于数据分析的几个原则. 3.4.1 不断验证假设 验证假设是否正确是机器学习前期数据分析最重要的目的.这里的假设包括但不限于:数据的格式.变量的数量.数据是否缺失.是否有极端值.采样是否均衡等.上面这些假设,如果稍有差错,就会让在后面得到的机器学习模型无用武

《构建实时机器学习系统》一1.4 实时是个“万灵丹”

1.4 实时是个"万灵丹" 成长会解决一切问题.如果一个企业正在飞速成长,大家步调一致.同心齐力,那么内斗或管理混乱等问题将是难以出现的.而当企业的成长受到了制约,停滞不前的时候,往往就会出现众多非技术性原因造成的悲剧. 我们强调机器学习的实时性,就是为了保证应用机器学习的企业能够利用机器学习的资源大踏步向前,而不会被早早地制约,徘徊不前.机器学习就已经够有挑战性的了,为什么还要采用实时机器学习?根据我们的经验,实时机器学习上马应该越早越好,原因具体有以下三点. 1.实时架构稳定性可以

《构建实时机器学习系统》一2.2 怎样衡量监督式机器学习模型

2.2 怎样衡量监督式机器学习模型 本章前面对一个好的实时机器学习模型的衡量只提到了"优秀" "合适"这样的字眼,本节将会详细展开,讨论监督式实时机器学习模型的衡量标准. 在实际应用中,监督式实时机器学习效果的好坏可以分为统计量是否优秀和应用业绩是否优秀两个方面.下面将按照这两部分分别进行介绍. 在讨论技术细节之前,先进行一下符号的定义: 给定 n 组已知的自变量和因变量{(Yi, Xi)}ni=1作为测试数据集,对于任意i,我们通过自变量Xi和模型f(Xi; b)

《构建实时机器学习系统》一1.5 实时机器学习的分类

1.5 实时机器学习的分类 按照实际应用中采用的方式不同,实时机器学习可以分为硬实时.软实时和批实时三种模式,下面将分别进行介绍. 1.5.1 硬实时机器学习 硬实时的定义是:响应系统在接收到请求之后,能够马上对请求进行响应反馈,做出处理.硬实时机器学习的主要应用场景是网页浏览.在线游戏.高频交易等对时效性要求非常高的领域.在这些领域中,我们往往需要将相应延迟控制在若干毫秒以下.对于高频交易等场景,更是有不少计算机软件.硬件专家,开发出了各种专有模块以在更短的时间内完成交易,获得超额利润. 在本

《构建实时机器学习系统》一1.8 实时机器学习模型的生存期

1.8 实时机器学习模型的生存期 进行实时机器学习开发必须考虑生存期.生存期是指一个系统从提出.设计.开发. 测试到部署运用.维护.更新升级或退役的整个过程.若在生存期设计上出现了数据,那么在后面的使用中就会出现各种各样的瓶颈阻碍应用产生价值. 从软件工程的角度上讲,开发实时机器学习也遵从构思.分析.设计.实现和维护五个步骤,这五个步骤可能会循环往复,随着业务的发展进行多次迭代.实时机器学习模型的应用由于其技术的特殊性,也具有自己的小型生存期,其中包括数据收集.数据分析.离线手工建模评测.上线自

《构建实时机器学习系统》一1.6 实时应用对机器学习的要求

1.6 实时应用对机器学习的要求 现今每年都会发表成千上万的机器学习相关的论文,其中不乏表现突出的方法论,但是并不是所有的机器学习模型在实际应用中都适用.实时机器学习的应用主要有以下几个方面的要求. 1.模型可扩展性 模型可扩展性需要整个机器学习应用的各个部分均可以轻易地根据实际需要进行扩展.这里的扩展可能是增加新的预测变量,也可能是在新的市场. 人群和用户界面中进行使用,还有可能是加入新的架构部件,进行可视化等操作. 2.模型运用低延迟性 低延迟性是实时机器学习应用区别于其他机器学习应用的核心

《构建实时机器学习系统》一第3章 数据分析工具 Pandas 3.1 颠覆 R 的 Pandas

第3章 数据分析工具 Pandas 3.1 颠覆 R 的 Pandas 进行机器学习应用的第一步是理解和探索数据,为此我们需要一套交互性很强的软件.一款理想的数据分析软件可以轻松地从多个来源读取数据.进行预处理,并且还要具有优良的统计和可视化功能,Pandas 就是这样一款软件. Pandas 是一款基于 Python 的数据分析和建模的开源软件包.2012 年两位笔者刚刚在亚马逊相识的时候,如日中天的 R工具正是机器学习和数据分析的主流,而基于Python 的数据分析工具 Pandas 正在默