前言
图数据库(第2版)
图数据库应对的是当今一个宏观商业世界的大趋势:凭借高度关联的数据中复杂而动态的联系获得洞察力并赢得竞争优势。无论我们想了解的是客户之间的联系,电话或数据中心网络元素之间的联系,娱乐产品制作者和消费者之间的联系,还是基因和蛋白质之间的联系,都会涉及大量的高度关联的数据。这些数据又会构成庞大的图,而理解和分析这些图的能力将成为公司在未来10年的核心竞争力。
对于任何达到一定规模或价值的数据,图数据库都是呈现和查询这些关联数据的最好方式。关联数据是这样的一种数据:它需要我们首先理解它的组成元素之间的关联方式。为了理解这个,很多时候我们需要去给这些事物之间的关联加以命名和限定。
尽管在一段时间以前,一些大公司就已经意识到这个问题并着手开发他们自己的图处理技术,但我们正处在一个技术全民化的时代。现如今,通用的图数据库已经成为现实,主流用户不必去投资建设自己的图架构,就可以享受关联数据带来的好处。
这次图数据和图思考复兴的伟大之处正在于图论本身并不是一个新事物。自18世纪欧拉创建了图论以来,数学家、社会学家、人类学家和其他领域工作者一直在研究和完善图论。然而,图论和图思考在信息管理中的应用却是最近几年的事情。那个时候,图数据库已经在社交网络、主数据管理(master data management)、地理空间、推荐系统以及其他领域帮我们解决了许多重要问题。有两股力量驱动我们对图数据库日益关注:一股力量是那些获得巨大商业成功的公司,如Facebook、Google和Twitter,他们都将自己的商业模式紧紧地围绕在他们专有的图技术上;另一股力量就是通用的图数据库开始进入到技术领域里。
目录
第1章 简介
1.1 图是什么
1.2 图领域概览
1.3 图数据库的威力
1.4 小结
第2章 关联数据的存储选择
2.1 关系型数据库缺少联系
2.2 NoSQL数据库也缺少联系
2.3 图数据库拥抱联系
2.4 小结