深入解析C++中类的多重继承_C 语言

C++类的多继承
在前面的例子中,派生类都只有一个基类,称为单继承。除此之外,C++也支持多继承,即一个派生类可以有两个或多个基类。
多继承容易让代码逻辑复杂、思路混乱,一直备受争议,中小型项目中较少使用,后来的 Java、C#、PHP 等干脆取消了多继承。想快速学习C++的读者可以不必细读。
多继承的语法也很简单,将多个基类用逗号隔开即可。例如已声明了类A、类B和类C,那么可以这样来声明派生类D:

class D: public A, private B, protected C{
 //类D新增加的成员
}

D是多继承的派生类,它以共有的方式继承A类,以私有的方式继承B类,以保护的方式继承C类。D根据不同的继承方式获取A、B、C中的成员,确定各基类的成员在派生类中的访问权限。
多继承下的构造函数

多继承派生类的构造函数和单继承类基本相同,只是要包含多个基类构造函数。如:

D类构造函数名(总参数表列): A构造函数(实参表列), B类构造函数(实参表列), C类构造函数(实参表列){
 新增成员初始化语句
}

各基类的排列顺序任意。

派生类构造函数的执行顺序同样为:先调用基类的构造函数,再调用派生类构造函数。基类构造函数的调用顺序是按照声明派生类时基类出现的顺序。

下面的定义了两个基类,BaseA类和BaseB类,然后用多继承的方式派生出Sub类。

#include <iostream>
using namespace std;
//基类
class BaseA{
protected:
 int a;
 int b;
public:
 BaseA(int, int);
};
BaseA::BaseA(int a, int b): a(a), b(b){}
//基类
class BaseB{
protected:
 int c;
 int d;
public:
 BaseB(int, int);
};
BaseB::BaseB(int c, int d): c(c), d(d){}
//派生类
class Sub: public BaseA, public BaseB{
private:
 int e;
public:
 Sub(int, int, int, int, int);
 void display();
};
Sub::Sub(int a, int b, int c, int d, int e): BaseA(a, b), BaseB(c, d), e(e){}
void Sub::display(){
 cout<<"a="<<a<<endl;
 cout<<"b="<<b<<endl;
 cout<<"c="<<c<<endl;
 cout<<"d="<<d<<endl;
 cout<<"e="<<e<<endl;
}
int main(){
 (new Sub(1, 2, 3, 4, 5)) -> display();
 return 0;
}

运行结果:

a=1
b=2
c=3
d=4
e=5

从基类BaseA和BaseB继承来的成员变量,在 Sub::display() 中都可以访问。
命名冲突

当两个基类中有同名的成员时,就会产生命名冲突,这时不能直接访问该成员,需要加上类名和域解析符。

假如在基类BaseA和BaseB中都有成员函数 display(),那么下面的语句是错误的:

Sub obj;
obj.display();

由于BaseA和BaseB中都有display(),系统将无法判定到底要调用哪一个类的函数,所以报错。

应该像下面这样加上类名和域解析符:

Sub obj;
obj.BaseA::display();
obj.BaseB::display();

通过这个举例可以发现:在多重继承时,从不同的基类中会继承一些重复的数据。如果有多个基类,问题会更突出,所以在设计派生类时要细致考虑其数据成员,尽量减少数据冗余。

C++多重继承的二义性问题
多重继承可以反映现实生活中的情况,能够有效地处理一些较复杂的问题,使编写程序具有灵活性,但是多重继承也引起了一些值得注意的问题,它增加了程序的复杂度,使 程序的编写和维护变得相对困难,容易出错。其中最常见的问题就是继承的成员同名而产生的二义性(ambiguous)问题。

如果类A和类B中都有成员函数display和数据成员a,类C是类A和类B的直接派生类。分别讨论下列3种情况。

1) 两个基类有同名成员

代码如下所示:

class A
{
public:
 int a;
 void display();
};
class B
{
public:
 int a;
 void display ();
};
class C: public A, public B
{
public:
 int b;
 void show();
};

如果在main函数中定义C类对象cl,并调用数据成员a和成员函数display :

 C cl;
 cl.a=3;
 cl.display();

由于基类A和基类B都有数据成员a和成员函数display,编译系统无法判别要访问的是哪一个基类的成员,因此程序编译出错。那么,应该怎样解决这个问题呢?可以用基类名来限定:

 cl.A::a=3; //引用cl对象中的基类A的数据成员a
 cl.A::display(); //调用cl对象中的基类A的成员函数display

如果是在派生类C中通过派生类成员函数show访问基类A的display和a,可以不 必写对象名而直接写

 A::a = 3; //指当前对象
 A::display();

2) 两个基类和派生类三者都有同名成员

将上面的C类声明改为:

 class C: public A, public B
 {
  int a;
  void display();
 };

如果在main函数中定义C类对象cl,并调用数据成员a和成员函数display:

 C cl;
 cl.a = 3;
 cl.display();

此时,程序能通过编译,也可以正常运行。请问:执行时访问的是哪一个类中的成员?答案是:访问的是派生类C中的成员。规则是:基类的同名成员在派生类中被屏蔽,成为“不可见”的,或者说,派生类新增加的同名成员覆盖了基类中的同名成员。因此如果在定义派生类对象的模块中通过对象名访问同名的成员,则访问的是派生类的成员。请注意:不同的成员函数,只有在函数名和参数个数相同、类型相匹配的情况下才发生同名覆盖,如果只有函数名相同而参数不同,不会发生同名覆盖,而属于函数重载。

有些读者可能对同名覆盖感到不大好理解。为了说明问题,举个例子,例如把中国作为基类,四川则是中国的派生类,成都则是四川的派生类。基类是相对抽象的,派生类是相对具体的,基类处于外层,具有较广泛的作用域,派生类处于内层,具有局部的作用域。若“中国”类中有平均温度这一属性,四川和成都也都有平均温度这一属性,如果没有四川和成都这两个派生类,谈平均温度显然是指全国平均温度。如果在四川,谈论当地的平均温度显然是指四川的平均温度;如果在成都,谈论当地的平均温度显然是指成都的平均温度。这就是说,全国的“平均温度”在四川省被四川的“平均温度”屏蔽了,或者说,四川的“平均温度”在当地屏蔽了全国的“平均温度”。四川人最关心的是四川的温度,当然不希望用全国温度覆盖四川的平均温度。

如果在四川要查全国平均温度,一定要声明:我要查的是全国的平均温度。同样,要在派生类外访问基类A中的成员,应指明作用域A,写成以下形式:

 cl.A::a=3; //表示是派生类对象cl中的基类A中的数据成员a
 cl.A::display(); //表示是派生类对象cl中的基类A中的成员函数display

3) 类A和类B是从同一个基类派生的

代码如下所示:

class N
{
public:
 int a;
 void display(){ cout<<"A::a="<<a<<endl; }
};
class A: public N
{
public:
 int al;
};
class B: public N
{
public:
 int a2;
};
class C: public A, public B
{
public:
 int a3;
 void show(){ cout<<"a3="<<a3<<endl; }
}
int main()
{
 C cl; //定义C类对象cl
 // 其他代码
}

在类A和类B中虽然没有定义数据成员a和成员函数display,但是它们分别从类N继承了数据成员a和成员函数display,这样在类A和类B中同时存在着两个同名的数据成员a和成员函数display。它们是N类成员的拷贝。类A和类B中的数据成员a代表两个不同的存储单元,可以分别存放不同的数据。在程序中可以通过类A和类B的构造函数去调用基类N的构造函数,分别对类A和类B的数据成员a初始化。

怎样才能访问类A中从基类N继承下来的成员呢?显然不能用

 cl.a = 3; cl.display();

 cl.N::a = 3; cl. N::display();

因为这样依然无法区别是类A中从基类N继承下来的成员,还是类B中从基类N继承下来的成员。应当通过类N的直接派生类名来指出要访问的是类N的哪一个派生类中的基类成员。如

 cl.A::a=3; cl.A::display(); //要访问的是类N的派生类A中的基类成员

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索c++
, 类
多重继承
java 深入继承、java深入解析、深入浅出c语言、深入解析atl、深入解析sas pdf,以便于您获取更多的相关知识。

时间: 2024-08-25 18:14:34

深入解析C++中类的多重继承_C 语言的相关文章

全面解析C++中的析构函数_C 语言

"析构函数"是构造函数的反向函数.在销毁(释放)对象时将调用它们.通过在类名前面放置一个波形符 (~) 将函数指定为类的析构函数.例如,声明 String 类的析构函数:~String(). 在 /clr 编译中,析构函数在释放托管和非托管资源方面发挥了特殊作用. 析构函数通常用于在不再需要某个对象时"清理"此对象.请考虑 String 类的以下声明: // spec1_destructors.cpp #include <string.h> class

C语言基础知识点解析(extern,static,typedef,const)_C 语言

一.extern的使用方法 下面是<C语言程序设计>中的关于extern的解释: 在一个源程序的所有源文件中,一个外部变量只能在某个文件中定义一次,而其他文件可以通过extern声明来访问它(定义外部变量的源文件中也可以包含对该外部变量的extern声明).外部变量的定义中必须指定数组的长度,但extern声明不一定指定数组的长度. 外部变量的初始化只能出现在其定义中. 假设函数push与pop定义在一个文件中,而变量val与sp在另一个文件中定义本那个被初始化(通常不太可能这样组织程序),则

节序问题:解析大小的端判定_C 语言

大小端的判断很简单,可判断了有什么用呢?这是一个难缠的问题,我最近就碰到了这样一个问题,比如,int a = 0x12345678,char* p = &a,那么p[0]等于多少呢?答案要么是0x12,要么是0x78,对吧,如果你知道他是小端(因为地球人都知道),那么你肯定就知道p[0] = 0x78,呵呵,换句话说,理解大小端对指针的运用还是有一定帮助的. 一.大小端概念要判断电脑的大小端,肯定先要理解大小端的概念:大端模式(Big-Endian),是指数据的高位,保存在内存的低地址中,而数据

深入解析C++中的引用类型_C 语言

c++比起c来除了多了类类型外还多出一种类型:引用.这个东西变量不象变量,指针不象指针,我以前对它不太懂,看程序时碰到引用都稀里糊涂蒙过去.最近把引用好好地揣摩了一番,小有收获,特公之于社区,让初学者们共享. 引用指的是对一个对象的引用.那么什么是对象?在c++中狭义的对象指的是用类,结构,联合等复杂数据类型来声明的变量,如 MyClass myclass,CDialog  mydlg,等等.广义的对象还包括用int,char,float等简单类型声明的变量,如int a,char b等等.我在

深入解析最长公共子串_C 语言

题目:如果字符串一的所有字符按其在字符串中的顺序出现在另外一个字符串二中,则字符串一称之为字符串二的子串.注意,并不要求子串(字符串一)的字符必须连续出现在字符串二中.请编写一个函数,输入两个字符串,求它们的最长公共子串,并打印出最长公共子串.例如:输入两个字符串BDCABA和ABCBDAB,字符串BCBA和BDAB都是是它们的最长公共子串,则输出它们的长度4,并打印任意一个子串. 分析:求最长公共子串(Longest Common Subsequence, LCS)是一道非常经典的动态规划题,

深入分析C++中类的大小_C 语言

首先看一个例子: 复制代码 代码如下: #include <iostream> using namespace std;  class A{};  class B {     int b;     char c; };  class C {     int c1;         static int c2; }; int C::c2 = 1;  class D:public C,public B{     int d; };  int main() {     cout<<&qu

解析ActiveMQ的使用说明总结_C 语言

本文只针对ActiveMQ常见的一些问题进行介绍.关于如下下载.编译.部署.使用等基本应用不在本文范围内.   1.ActiveMQ支持消息过滤设置规则和用法 selector支持下列几种方式: (1) String literals: "color ='blue'" (2) Byte strings: "myBytes <> "0X0AFC23"" (3) Numeric values: "NoltemsInStock &

标准CSV格式的介绍和分析以及解析算法实例详解_C 语言

     CSV是一种古老的数据传输格式,它的全称是Comma-Separated Values(逗号分隔值).出生在那个标准缺失的蛮荒年代,CSV的标准一直(到2005年)是NULL--世间存在着N种CSV格式,它们自成体系,相互不兼容.比如我们从名字可以认为CSV至少是一种使用逗号分隔的格式,但是实际上,有的CSV格式却是使用分号(;)去做分隔.假如,不存在一种标准,那么这东西最终会因为碎片化而发展缓慢,甚至没落.本文讨论的CSV格式是基于2005年发布的RFC4180规范.我想,在这个规范

解析四方定理的应用_C 语言

我们可以通过计算机验证其在有限范围的正确性. 复制代码 代码如下: #include <stdio.h>#include <math.h> int f(int n, int a[], int idx){ if(n==0) return 1;   if(idx==4)  return 0;  //超出数组范围 出错  for(int i=(int)sqrt(n); i>=1; i--) {  a[idx] = i;   if(f(n-i*i, a, idx+1) == 1)