Java垃圾回收调优教程及实例

Java 垃圾回收调优和其它性能优化活动相比,首先你要确保自己足够了解整个应用的情况以及调优预期的结果,而不是单单满足于应用的某一部分调优。一般情况下,遵循以下过程比较容易:

    明确自己的性能目标。
    测试。
    测量调优结果。
    与目标进行比较。
    改变方法并再次测试。

性能调优目标要是可确定且可测量的,这非常重要。这些目标包括延迟、吞吐量和容量,想要了解更多,我推荐看看垃圾回收手册(Garbage Collection Handbook)中相应的章节。让我们看看在实践中如何设定并达到这样的调优目标。为了这个目的,让我们来看一个示例代码:

//imports skipped for brevity
public class Producer implements Runnable {
 
  private static ScheduledExecutorService executorService = Executors.newScheduledThreadPool(2);
 
  private Deque<byte[]> deque;
  private int objectSize;
  private int queueSize;
 
  public Producer(int objectSize, int ttl) {
    this.deque = new ArrayDeque<byte[]>();
    this.objectSize = objectSize;
    this.queueSize = ttl * 1000;
  }
 
  @Override
  public void run() {
    for (int i = 0; i < 100; i++) {
      deque.add(new byte[objectSize]);
      if (deque.size() > queueSize) {
        deque.poll();
      }
    }
  }
 
  public static void main(String[] args) throws InterruptedException {
    executorService.scheduleAtFixedRate(new Producer(200 * 1024 * 1024 / 1000, 5), 0, 100, TimeUnit.MILLISECONDS);
    executorService.scheduleAtFixedRate(new Producer(50 * 1024 * 1024 / 1000, 120), 0, 100, TimeUnit.MILLISECONDS);
    TimeUnit.MINUTES.sleep(10);
    executorService.shutdownNow();
  }
}

代码中提交了两个作业(job),且每 100ms 运行一次。每个作业模拟特定对象的生命周期:先创建对象,让它们“存活”一段时间,然后忘记它们,让 GC 回收内存。 运行这个示例时,开启 GC 日志并使用以下参数:
1
    
-XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps

我们立即在日志文件中看到 GC 的影响和下面这些相似:

2015-06-04T13:34:16.119-0200: 1.723: [GC (Allocation Failure) [PSYoungGen: 114016K->73191K(234496K)] 421540K->421269K(745984K), 0.0858176 secs] [Times: user=0.04 sys=0.06, real=0.09 secs]
2015-06-04T13:34:16.738-0200: 2.342: [GC (Allocation Failure) [PSYoungGen: 234462K->93677K(254976K)] 582540K->593275K(766464K), 0.2357086 secs] [Times: user=0.11 sys=0.14, real=0.24 secs]
2015-06-04T13:34:16.974-0200: 2.578: [Full GC (Ergonomics) [PSYoungGen: 93677K->70109K(254976K)] [ParOldGen: 499597K->511230K(761856K)] 593275K->581339K(1016832K), [Metaspace: 2936K->2936K(1056768K)], 0.0713174 secs] [Times: user=0.21 sys=0.02, real=0.07 secs]

基于日志中的信息,我们可以开始改善性能。并请牢记三个不同的目标:

    确保 GC pause(垃圾回收暂停)的最坏情况不要超过预期的临界值。
    确保应用程序线程停滞时间不超过预先确定的阀值。
    降低基础架构成本,同时确保我们仍可以实现合理的延迟和吞吐量目标。

为此,以三个不同的配置各运行了10分钟,在下表中总结了三个差距较大的结果:
堆     GC算法     有效工作     长暂停
-Xmx12g     -XX:+UseConcMarkSweepGC     89.8%     560 ms
-Xmx12g     -XX:+UseParallelGC     91.5%     1,104 ms
-Xmx8g     -XX:+UseConcMarkSweepGC     66.3%     1,610 ms

实验中,设置不同的 GC 算法和不同的堆大小,运行相同的代码,然后测量垃圾回收暂停的持续时间和吞吐量。实验细节和结果的解释都在我们的垃圾回收手册中。看看手册中的一些例子,修改一些简单的配置造成延迟、吞吐量等各方面的性能完全不同。

注意:为了保持示例尽可能简单,只有数量有限的输入参数被改变,例如没有对不同数量的核心(CPU core)或不同堆布局进行测试。

一次Java垃圾收集调优实战

1 资料

    JDK5.0垃圾收集优化之--Don't Pause(花钱的年华)  
    编写对GC友好,又不泄漏的代码(花钱的年华)  
    JVM调优总结  
    JDK 6所有选项及默认值  

2 GC日志打印

  GC调优是个很实验很伽利略的活儿,GC日志是先决的数据参考和最终验证:

-XX:+PrintGCDetails -XX:+PrintGCTimeStamps(GC发生的时间) -XX:+PrintGCApplicationStoppedTime(GC消耗了多少时间) -XX:+PrintGCApplicationConcurrentTime(GC之间运行了多少时间)

 
3 收集器选择

CMS收集器:暂停时间优先

   配置参数:-XX:+UseConcMarkSweepGC
   已默认无需配置的参数:-XX:+UseParNewGC(Parallel收集新生代) -XX:+CMSPermGenSweepingEnabled(CMS收集持久代) -XX:UseCMSCompactAtFullCollection(full gc时压缩年老代)

   初始效果:1g堆内存的新生代约60m,minor gc约5-20毫秒,full gc约130毫秒。
Parallel收集器:吞吐量优先

    配置参数: -XX:+UseParallelGC -XX:+UseParallelOldGC(Parallel收集年老代,从JDK6.0开始支持)

    已默认无需配置的参数: -XX:+UseAdaptiveSizePolicy(动态调整新生代大小)

    初始效果:1g堆内存的新生代约90-110m(动态调整),minor gc约5-20毫秒,full gc有无UseParallelOldGC 参数分别为1.3/1.1秒,差别不大。

    另外-XX:MaxGCPauseMillis=100 设置minor gc的期望最大时间,JVM会以此来调整新生代的大小,但在此测试环境中对象死的太快,此参数作用不大。
4 调优实战

      Parallel收集高达1秒的暂停时间基本不可忍受,所以选择CMS收集器。

      在被压测的Mule 2.0应用里,每秒都有大约400M的海量短命对象产生:

    因为默认60M的新生代太小了,频繁发生minor gc,大约0.2秒就进行一次。
    因为CMS收集器中MaxTenuringThreshold(生代对象撑过过多少次minor gc才进入年老代的设置)默认0,存活的临时对象不经过Survivor区直接进入年老代,不久就占满年老代发生full gc。

     对这两个参数的调优,既要改善上面两种情况,又要避免新生代过大,复制次数过多造成minor gc的暂停时间过长。

    使用-Xmn调到1/3 总内存。观察后设置-Xmn500M,新生代实际约460m。(用-XX:NewRatio设置无效,只能用 -Xmn)。
    添加-XX:+PrintTenuringDistribution 参数观察各个Age的对象总大小,观察后设置-XX:MaxTenuringThreshold=5。

      优化后,大约1.1秒才发生一次minor gc,且速度依然保持在15-20ms之间。同时年老代的增长速度大大减缓,很久才发生一次full gc,

      参数定稿:

 -server -Xms1024m -Xmx1024m -Xmn500m -XX:+UseConcMarkSweepGC   -XX:MaxTenuringThreshold=5  -XX:+ExplicitGCInvokesConcurrent

 

最后服务处理速度从1180 tps 上升到1380 tps,调整两个参数提升17%的性能还是笔很划算的买卖。

另外,JDK6 Update 7自带了一个VisualVM工具,内里就是之前也有用过的Netbean Profiler,类似JConsole一样使用,可以看到线程状态,内存中对象以及方法的CPU时间等调优重要参考依据。

时间: 2024-10-22 09:54:31

Java垃圾回收调优教程及实例的相关文章

Java垃圾回收调优实战

Java 垃圾回收调优不同于任何其它性能优化活动. 首先你要确保自己足够了解整个应用的情况以及调优预期的结果,而不是单单满足于应用的某一部分调优.一般情况下,遵循以下过程比较容易: 明确自己的性能目标. 测试. 测量调优结果. 与目标进行比较. 改变方法并再次测试. 性能调优目标要是可确定且可测量的,这非常重要.这些目标包括延迟.吞吐量和容量,想要了解更多,我推荐看看垃圾回收手册(Garbage Collection Handbook)中相应的章节.让我们看看在实践中如何设定并达到这样的调优目标

[JVM]成为JavaGC专家(1)—深入浅出Java垃圾回收机制

对于Java开发人员来说,了解垃圾回收机制(GC)有哪些好处呢?首先可以满足作为一名软件工程师的求知欲,其次,深入了解GC如何工作可以帮你写出更好的Java应用. 这仅仅代表我个人的意见,但我坚信一个精通GC的人往往是一个好的Java开发者.如果你对GC的处理过程感兴趣,说明你已经具备较大规模应用的开发经验.如果你曾经想过如何正确的选择GC算法,那意味着你已经完全理解你所开发的应用的特点.当然,我们不能以偏概全,这不能作为评价一个好的开发人员的共通标准.但是,我要说的是,深入理解GC是成为一名伟

java垃圾回收机制

Java的堆是一个运行时数据区,类的实例(对象)从中分配空间.Java虚拟机(JVM)的堆中储存着正在运行的应用程序所建立的所有对象,这些对象通过new.newarray.anewarray和multianewarray等指令建立,但是它们不需要程序代码来显式地释放.一般来说,堆的是由垃圾回收 来负责的,尽管JVM规范并不要求特殊的垃圾回收技术,甚至根本就不需要垃圾回收,但是由于内存的有限性,JVM在实现的时候都有一个由垃圾回收所管理的堆.垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引

管理Java垃圾回收的五个建议

[编者按]本文作者是Niv Steingarten,是Takipi 的联合创始人,热衷于编写优雅简洁的代码.作者通过对垃圾收集器的介绍和梳理,在管理垃圾回收方面提出了五个建议,降低收集器开销,帮助大家进一步提升项目性能.本文系国内 ITOM 管理平台 OneAPM 工程师编译整理. 保持GC低开销最实用的建议是什么? 早有消息声称Java 9即将发布,但如今却一再推迟,其中比较值得关注的是G1("Garbage-First")垃圾收集器将成为HotSpot JVM的默认收集器.从串行收

关于Java垃圾回收被误解的7件事

对Java垃圾回收最大的误解是什么?它实际又是什么样的呢? 当 我还是小孩的时候,父母常说如果你不好好学习,就只能去扫大街了.但他们不知道的是,清理垃圾实际上是很棒的一件事.可能这也是即使在Java的世界中, 同样有很多开发者对GC算法产生误解的原因--包括它们怎样工作.GC是如何影响程序运行和你能对它做些什么.因此我们找到了Java性能调优专家Haim Yadid,并把名为Java performance tuning guide的文章发表在Takipi的博客上. 带着对性能调优指南浓厚的兴趣

细述 Java垃圾回收机制→Java Garbage Collection Introduction

计划写一个介绍Java垃圾回收基础的系列文章,共分四部分: Java垃圾回收简介 Java垃圾回收器是如何工作的? 各种类型的Java垃圾回收器 Java垃圾回收的监控和分析 本文是这个系列的第一篇文章,这篇文章将会介绍一些基本术语,如:JDK,JVM,JRE,HotSpot VM,以及理解JVM的架构和Java堆内存结构.在开始学习Java垃圾回收机制之前确实有必要了解一下这些基本东西. 关键的Java术语 Java API–一个帮助程序员创建Java应用的打包好的库集合 Java Devel

细述 Java垃圾回收机制→How Java Garbage Collection Works?

这是垃圾回收机制系列文章的第二篇.希望您已经读过了第一部分Java垃圾回收简介. Java垃圾回收是一个自动运行的管理程序运行时使用的内存的进程.通过GC的自动执行JVM将程序员从申请和释放内存的繁重操作中解放出来. Java垃圾回收GC初始化 作为一个自动执行的进程,程序员不需要在代码中主动初始化GC.Java提供了System.gc()和Runtime.gc()这两个hook来请求JVM调用GC进程. 尽管要求系统机制给程序员提供调用GC的机会,但是实际上这是由JVM负责决定的.JVM可以选

细述 Java垃圾回收机制→Java Garbage Collection Monitoring and Analysis

Java垃圾回收监控和分析工具 Java VisualVM Naarad GCViewer IBM Pattern Modeling and Analysis Tool for Java Garbage Collector HPjmeter IBM Monitoring and Diagnostic Tools for Java – Garbage Collection and Memory Visualizer Verbose GC Analyzer Java VisualVM Java Vi

理解Java垃圾回收_java

当程序创建对象.数组等引用类型的实体时,系统会在堆内存中为这一对象分配一块内存,对象就保存在这块内存中,当这块内存不再被任何引用变量引用时,这块内存就变成垃圾,等待垃圾回收机制进行回收.垃圾回收机制具有三个特征: 垃圾回收机制只负责回收堆内存中的对象,不会回收任何物理资源(例如数据库连接,打开的文件资源等),也不会回收以某种创建对象的方式以外的方式为该对像分配的内存,(例如对象调用本地方法中malloc的方式申请的内存) 程序无法精确控制垃圾回收的运行,只可以建议垃圾回收进行,建议的方式有两种S