《Spark与Hadoop大数据分析》——3.5 持久化与缓存

3.5 持久化与缓存

Spark 的一个独特功能是在内存中持久化 RDD。你可以使用 persist 或 cache 变换来持久化 RDD,如下所示:

上述两个语句都是相同的,并且会在 MEMORY_ONLY 存储级别缓存数据。它们的区别在于:cache 是指 MEMORY_ONLY 存储级别,而 persist 可以根据需要选择不同的存储级别,如下表所示。当第一次使用动作来进行计算时,它将保存在节点上的内存中。了解缓存 RDD 的百分比及其大小的最简单方法是检查管理界面中的 Storage 选项卡,如图3-11 所示:

3.5.1 存储级别

根据应用需求的需要,RDD 可以用不同的存储级别来存储。下表显示了 Spark 的存储级别及其含义。


3.5.2 应该选择哪个存储级别

Spark 的各个存储级别在内存占用和 CPU 效率之间提供不同的权衡。你可以按照下面的过程选择其中一个:

时间: 2024-10-06 11:02:55

《Spark与Hadoop大数据分析》——3.5 持久化与缓存的相关文章

《Spark与Hadoop大数据分析》——1.3 工具和技术

1.3 工具和技术 让我们来看看在 Hadoop 和 Spark 中用于大数据分析的不同工具和技术. 虽然 Hadoop 平台可以用于存储和处理数据,但 Spark 只能通过将数据读入内存来进行处理. 下表展示了典型大数据分析项目中所使用的工具和技术.

《Spark与Hadoop大数据分析》一一3.5 持久化与缓存

3.5 持久化与缓存 Spark 的一个独特功能是在内存中持久化 RDD.你可以使用 persist 或 cache 变换来持久化 RDD,如下所示: 上述两个语句都是相同的,并且会在 MEMORY_ONLY 存储级别缓存数据.它们的区别在于:cache 是指 MEMORY_ONLY 存储级别,而 persist 可以根据需要选择不同的存储级别,如下表所示.当第一次使用动作来进行计算时,它将保存在节点上的内存中.了解缓存 RDD 的百分比及其大小的最简单方法是检查管理界面中的 Storage 选

《Spark与Hadoop大数据分析》一一导读

Preface 前 言 本书讲解了Apache Spark和Hadoop的基础知识,以及如何通过简单的方式将它们与最常用的工具和技术集成在一起.所有Spark组件(Spark Core.Spark SQL.DataFrame.Dataset.Conventional Streaming.Structured Streaming.MLlib.GraphX和Hadoop核心组件).HDFS.MapReduce和Yarn 都在 Spark + Hadoop 集群的实现示例中进行了深入的探讨. 大数据分

《Spark与Hadoop大数据分析》——导读

前 言 本书讲解了Apache Spark和Hadoop的基础知识,以及如何通过简单的方式将它们与最常用的工具和技术集成在一起.所有Spark组件(Spark Core.Spark SQL.DataFrame.Dataset.Conventional Streaming.Structured Streaming.MLlib.GraphX和Hadoop核心组件).HDFS.MapReduce和Yarn 都在 Spark + Hadoop 集群的实现示例中进行了深入的探讨. 大数据分析行业正在从 M

《Spark与Hadoop大数据分析》——1.1 大数据分析以及 Hadoop 和 Spark 在其中承担的角色

1.1 大数据分析以及 Hadoop 和 Spark 在其中承担的角色 传统的数据分析使用关系型数据库管理系统(Relational Database Management System,RDBMS)的数据库来创建数据仓库和数据集市,以便使用商业智能工具进行分析.RDBMS 数据库采用的是写时模式(Schema-on-Write)的方法,而这种方法有许多缺点. 传统数据仓库的设计思想是用于提取.转换和加载(Extract, Transform, and Load,ETL)数据,据此回答与用户需求

《Spark与Hadoop大数据分析》一一

3.1 启动 Spark 守护进程 如果你计划使用 Standalone 的集群管理器,则需要启动 Spark 的主机(master)和工作机(worker)的守护进程(daemon),它们是 Spark 架构的核心组件.守护进程的启动/停止在不同的发行版里略有差异.Hadoop 发行版(如 Cloudera.Hortonworks 和 MapR)会把 Spark 作为服务,并把 YARN 作为默认的资源管理器.这意味着在默认情况下所有 Spark 应用程序都会在 YARN 框架上运行.但是,要

《Spark与Hadoop大数据分析》——3.2 学习Spark的核心概念

3.2 学习Spark的核心概念 在本节,我们要了解 Spark 的核心概念.Spark 提供的主要抽象是弹性分布式数据集(Resilient Distributed Dataset,RDD).因此,我们要了解 RDD 是什么,以及提供内存级性能和容错的 RDD 中包含的运算.但是,首先我们要学习使用 Spark 的方法. 3.2.1 使用 Spark 的方法 使用 Spark 有两种方法,即 Spark Shell 和 Spark 应用程序. 1. Spark Shell 这是可以利用 Sca

《Spark与Hadoop大数据分析》一一第1章 从宏观视角看大数据分析

第1章 从宏观视角看大数据分析 本书的目标是让你熟悉 Apache Spark用到的工具和技术,重点介绍Hadoop平台上使用的Hadoop部署和工具.大多数Spark的生产环境会采用Hadoop集群,用户在集成 Spark和Hadoop配套的各种工具时会遇到很多挑战.本书将讲解Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)和另一种资源协商器(Yet Another Resource Negotiator,YARN)面临的集成挑战,以及Spa

《Spark与Hadoop大数据分析》——3.1 启动 Spark 守护进程

3.1 启动 Spark 守护进程 如果你计划使用 Standalone 的集群管理器,则需要启动 Spark 的主机(master)和工作机(worker)的守护进程(daemon),它们是 Spark 架构的核心组件.守护进程的启动/停止在不同的发行版里略有差异.Hadoop 发行版(如 Cloudera.Hortonworks 和 MapR)会把 Spark 作为服务,并把 YARN 作为默认的资源管理器.这意味着在默认情况下所有 Spark 应用程序都会在 YARN 框架上运行.但是,要