小白学数据分析----->留存率与运营活动分析_I

有关留存率的事情最近扯得比较多,因为在分析数据的时候,越发觉得,分析一定是要来解决问题的,留存率不知何时突然变得流行了,在此讨论留存率倒不是因为流行,而是觉得以留存率为核心,的确是可以帮助我们解决不少的问题,但前提是,不要只停留在你所知道的次日,3日,7日留存率就OK,因为纵然你知道与benchmarks是差距,如果只抱着这个指标,你依然不知道自己该怎么做。下面会给大家一张图,让小白们看到,真正懂得要如何看待和分析留存率的,恰好,也验证我之前的一个观点。

公测100+周,各周新用户在他们各自生命周期内各周的留存;
孤单的蓝线,是第一周的新用户和不删档内测阶段的用户总和;

当然以上的曲线是按照周留存来计算的。不过比较明显的是,如果你看过长尾理论就会知道这是符合幂律分布的。

回到今天的话题上,今天要说的留存率和运营活动的一些想法。近期卡牌类的游戏,比较流行,从榜单来看覆盖的密度也比较高,今天的例子就以卡牌游戏的运营活动为例来说说。

在整个运营的大体系中,活动运营只是其中的一部分,然而却起到了非常关键的作用,不要把活动当成了运营的全部,这是首先大家要建立的认识。之所以要拿卡牌作为一个例子,主要是在卡牌游戏对于活动的以来程度比较大,其中缘由我简单说一下:

核心玩法[解题模式]相对简单,易疲劳;

内容丰富性和节奏感;

所以很多的时候,我们需要去用活动去进行相应的刺激和鼓励。

在如今已变成红海的卡牌市场,游戏众多,想要突破在玩法变革,题材内容变化等方面,运营实力是一个很重要的因素,这个运营实力不只是说运营人员的营销和经营用户的能力,还有对于细节的调整和挖掘。

在活动这个问题上,我们可能组织了以下的各种活动:

但活动其实本身是一个过程,是一个需求反馈过程,因此在这个过程中,怎么去借助数据挖掘需求,提升留存质量是一个关键。不过要说明的是,留存的提升活动只是一个手段,但是核心还在产品质量,说到这点,其实细节是关键。

仔细看这张图,你会发现多了一个活动弹窗,其实这么做的目的有很多,它不仅仅只是一个弹窗,在背后有这么几条核心价值:

弹窗对于移动用户而言是有认知的,用户不会反感,国内用户很习惯活动这一套,极低的认知成本造就我们可以在启动的时候就做这件事;

弹窗的出现以及内容的引入,至少是70%以上的用户愿意停留5s左右的时间来查看各种充值,福利活动信息,因为这点,这为客户端的加载,程序更新,网络连接等争取了时间,这一点可以给大家举一个例子,同样是与人聊天,同样是一样的时间,与爱人和朋友的内心感受是不同的,一个感觉时间总是短暂,一个总是感觉时间漫长;

目前每一个CP都要对接很多的渠道,很多的渠道也为游戏开设了论坛,游戏的新闻,活动信息都是发布在这些渠道论坛上面,然而面临一个现实问题在于,并不是所有用户都能被我们的相关信息覆盖到,也就是说,用户的分散性,和渠道多样性,造成我们很难将信息很好的传达给每一个玩家,然而这个弹窗信息却解决的了这个问题。

对游戏而言,尤其是移动游戏,如何快速的让用户进入游戏,流畅体验,这是必须要解决的问题,纵然你的核心玩法再好,美术再好,进入不了游戏一切都免谈,在这点上,弹窗其实帮助我们缓解了这个问题。

从我们关心的留存来看,我们的计算中,一定那些成功进入以后的用户才能算作是留存用户,而这些留下来用户的行为其实就变得很重要,关于这点的分析见http://www.cnblogs.com/yuyang-DataAnalysis/archive/2013/05/10/3071764.html

从这点来说,既然是留下来这些人,那么我们就需要了解留下这批人做了什么,在那些方面可以拉升这个留存率,这是一个核心问题,其实这点上除了游戏本身的质量决定之外,你的运营手段使用,譬如活动运营就是一个核心因素,这点在随后的文章中讲解。

时间: 2024-09-20 14:46:31

小白学数据分析----->留存率与运营活动分析_I的相关文章

小白学数据分析----->留存率使用的窘境_I

随着移动游戏整体的火热,现在看到太多的数据,太多信息,很多时候我们仰慕和钦佩别人的成功,我们总是把这个行业达成所谓共识的一些数据来出来说明问题.因为我们笃信数据是有力的证据,并且可以说明实力.然而太多的时候,因为沾染了更多的外在气氛,以至于在一些情况下看不到自己接下来的清晰的方向.比如今天说的留存率问题. 关于留存率,之前也谈到了很多,包括计算标准和使用方法,不过细心的人应该懂得那些只是一个最初级的阶段,因为即使你知道的留存率是什么,但是你会发现你依旧不知道要去做什么?原因在于,你觉得大家都在谈

小白学数据分析----->渠道、运营、数据_I

学分析论坛|专注于游戏数据分析 针对本文的相关的讨论,请移步http://www.xuefenxi.com/forum.php?mod=viewthread&tid=112&extra= 上周六做了一个演讲,关于渠道.数据.运营的内容,今天开始,针对演讲的一些内容,有针对性的阐述一下.不过既然我是一个数据分析师,自然还是从数据分析角度来看待这个问题,在后期的文章中,我会加入一些案例,帮助理解. 渠道是最有效的获取潜在用户的方式 渠道存在海量的用户资源,并服务于开发者.渠道本身聚合了大量的用

小白学数据分析----->留存率的三个普适原则

关于留存率的文章,现在很多,以下要说的内容实际上算是对于留存率使用的一个小归纳.这篇文章所要阐述的内容其实早在去年就已经形成了,一直没有足够的时间组织起来,因为我觉得虽然简单,不过影响的范畴和可扩展的领域很多.值得去思考和借鉴. 留存率存在三个原则 留存率原则之一 不同用户群之间的留存率趋势是一致的 针对这点,其实可扩展的内容很多,比如不同渠道之间的用户留存趋势是一致的,不过不同渠道之间的留存率水平是不一致的,这一点在前一篇文章中已经有涉及过,这里不详细讲述.不同用户群,渠道的留存差异可以作为衡

小白学数据分析-----> 留存率是什么?(番外篇)

最近一个时期和很多的人进行了交流,收获了不少,也思考了不少,如今我们都能得到数据,如今我们也都能按照所谓的定义和框架分析问题,只是我觉得有时候不必要一定要一直站在框架内去分析一些问题,进步和前进的力量来自于质疑,并进行革新和再创造. 留存率这个数据指标不记得从何时起变得那么重要,重要到研发上把它作为游戏好坏的一个标准,运营商(平台)作为了一个准入的钥匙,是否值得继续下去.有时候觉得粗暴,甚至无知了有点.因为肤浅的百分比背后隐藏着更多的金子,也可能是垃圾. 以上算是一点吐槽,更多潜在的问题这里不想

小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析----->付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析----->数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析----->什么是活跃_I(DAU)

最近和几个人聊天,大家对于活跃都有着自己的看法,此外因为一些标准的问题,不熟悉分析术语的很多人把活跃,留存等很多信息都搞混了.后来发现这是一个很现实的问题.在一些我 看来不是问题的问题都变成了问题了,因此在此特地说说活跃的事,帮助更多从事游戏数据分析的小白们成长. 究竟什么是活跃?在日常与外界合作过程中,我们经常日活跃.周活跃.月活跃等等信息,貌似听起来比较简单,但是真正如果自己实施操作统计数据时却发现自己又不懂这些定义,因此作为一些分析师.甚至开发人员就会发现很难去操作.以下我将描述三个活跃的

小白学数据分析----->付费渗透率_I 你的渗透率有价值吗?

早先在公司参加了一次付费渗透率的培训,后来觉得蛮有意思的,拿出来和大家分享一下,顺便说说我的看法. 在游戏运营数据分析中有一个非常重要的指标就是一个游戏的付费渗透率,所谓付费渗透率就是在一个游戏中,付费玩家占整个活跃玩家的比例,用数学表达式就是付费玩家数/活跃玩家数. "宏观上来说,付费渗透率代表了在玩家群体的付费意愿.消费观念和目前的游戏消费能力."某种程度上,这说明了游戏本身付费玩家转化能力,IB,经济系统是否为玩家所接受,是对OBT之后游戏收益能力的一个有效指标(当然也要结合AP