[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正

1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$

 

 

2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{\bf u}-{\bf P}) -\mu\rot{\bf H}\times{\bf H}=\rho {\bf F}, \eex$$ 或 $$\bex \rho \cfrac{\rd {\bf u}}{\rd t} -\Div{\bf P} -\mu_0\rot{\bf H}\times{\bf H}=\rho {\bf F}. \eex$$

 

 

3.  能量守恒方程 $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2+\cfrac{1}{2}\mu_0 H^2} +\Div\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P} {\bf u}}\\ +\Div&\sez{\cfrac{1}{\sigma}\rot{\bf H}\times{\bf H}-\mu_0({\bf u}\times{\bf H})\times{\bf H}} =\Div(\kappa \n T)+\rho {\bf F}\cdot{\bf u}, \eea \eeex$$ 或 $$\bex \rho T\cfrac{\rd S}{\rd t} -\bar \mu \cdot \tr \sex{{\bf S}\cdot\n {\bf u}} -\sex{\bar \mu'-\cfrac{2}{3}\bar \mu}|\Div{\bf u}|^2 -\cfrac{1}{\sigma}|\rot{\bf H}|^2=\Div(\kappa\n T). \eex$$

时间: 2024-10-15 00:51:09

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正的相关文章

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正

1.  Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f, \eea \eee$$ 其中 ${\bf D}=\ve {\bf E}$, ${\bf B}=\mu{\bf H}$

[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构

1.  在流体存在粘性.热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.     2.  在流体存在粘性.热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组.     3.  如果流体没有任何耗散过程, 此时称为理想磁流体, 而其方程称为理想磁流体力学方程组, 它是一个具有守恒律形式的一阶拟线性对称双曲组.  

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组

不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\bf u}}{\rd t}+\n \sex{p+\cfrac{1}{2}\mu_0H^2} &=\mu_0({\bf H}\cdot\n){\bf H}+\bar \mu \lap{\bf

[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组

1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div(\rho {\bf u})=0,\\ \cfrac{\p (\rho{\bf u})}{\p t}&+\Div(\rho{\bf u}\times{\b

[物理学与PDEs]第5章第1节 引言

1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科.     2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理量 (下一章讨论).     3.  弹性体: 在荷载作用下产生弹性形变, 而撤去荷载后变形立即消失, 无题恢复原来的状态.     4.  本构关系: 物体的变形与应力之间的某种关系.     5.  弹性理论 $$\beex \bea\mbox{弹性理论}\sedd{\ba{ll} \m

[物理学与PDEs]第4章第1节 引言

1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况.     2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一种是爆炸 (detonation): 火焰以 $\geq 2000\ m/s$ 的速度向前传播, 此时, Chapman (1899) 与 Jouquet (1905) 认为化学反应过程是瞬时发生并完成的, 即有一波前 (wavefront) 进入未燃气体, 并瞬时地将它变成已燃气体.  

[物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

5. 6 弹性静力学方程组的定解问题           5. 6. 1 线性弹性静力学方程组         1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cfrac{\p ^2u_k}{\p x_j\p x_l}=\rho_0b_i,\quad i=1,2,3.  \eee$$     2.  (Korn 不等式) 设 $\Omega\subset{\bf R}^3$ 为有界区域, 则 $$\bex \exists\

[物理学与PDEs]第1章第5节 Maxwell 方程组的数学结构, 电磁场的波动性 5.3 电磁场的波动性, 自由电磁波

1. 由 Maxwell 方程组易知 $$\beex \bea \cfrac{1}{c^2}\cfrac{\p^2{\bf E} }{\p t^2}-\lap{\bf E}  &=-\sex{\cfrac{1}{\ve_0}\n\rho+\mu_0\cfrac{\p {\bf j} }{\p t}},\\ \cfrac{1}{c^2}\cfrac{\p^2{\bf B} }{\p t^2}-\lap{\bf B}  &=\mu_0\rot{\bf  j}. \eea \eeex$$ 于是

[物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.1 媒质中的 Maxwell 方程组

1.媒质的极化 (1) 束缚电荷: 被束缚在原来位置上的电荷. (2) 在电磁场中, 束缚电荷会有一微小的运动, 而产生电偶极矩. 此即称为媒质的极化. (3) 设电极化强度 (单位体积的电偶极矩) 为 ${\bf P}$, 则 $$\bex \rho'=-\Div {\bf P}, \eex$$ 其中 $\rho'$ 为束缚电荷体密度. 再由 Gauss 定理, $$\bex \Div{\bf E}=\cfrac{1}{\ve_0}(\rho_f+\rho'), \eex$$ 其中 $\rho