[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$corresponds to the linear map that takes a vector $u$ of $\scrH$ to $\sef{h,u}k$. This linear transformation has rank one and all rank one transformations can be obtained in this way.

 

(2). An explicit transformation of this isomorphism $\varphi$ is outlined below. Let $e_1,\cdots,e_n$ be an orthonormal basis for $\scrH$ and for $\scrH^*$. Let $f_1,\cdots,f_m$ be an orthonormal basis of $\scrK$. Identify each element of $\scrL(\scrH,\scrK)$ with it matrix with respect to these bases. Let $E_{ij}$ be the matrix all whose entries are zero except the $(i,j)$-entry, which is $1$. Show that $\varphi(f_i\otimes e_j)=E_{ij}$ for all $1\leq i\leq m$, $1\leq j\leq n$. Thus, if $A$ is any $m\times n$ matrix with entries $a_{ij}$, then $$\bex \varphi^{-1}(A)=\sum_{i,j}a_{ij}(f_i\otimes e_j) =\sum_{i,j}(Ae_j)\otimes e_j. \eex$$

 

(3). the space $\scrL(\scrH,\scrK)$ is a Hilbert space with inner product $$\bex \sef{A,B}=\tr A^*B. \eex$$ The set $E_{ij}$, $1\leq i\leq m$, $1\leq j\leq n$ is an orthonormal basis for this space. Show that the map $\varphi$ is a Hilbert space isomorphism; i.e., $$\bex \sef{\varphi^{-1}(A),\varphi^{-1}(B)} =\sef{A,B},\quad\forall\ A,B. \eex$$

 

Solution.

 

(1). $$\beex \ba{rcl} \scrK\otimes \scrH^*&\to&\scrL(\scrH,\scrK)\\ k\otimes h^*&\mapsto&\sex{u\mapsto \sef{h,u}k}. \ea \eeex$$ On the other hand, if $f\in \scrL(\scrH,\scrK)$ is of rank one, then there exists some $0\neq v\in \scrK$ such that $$\bex f(u)=a_uv. \eex$$ Since $$\beex \bea a_{bu}v=f(bu)=ba_uv\ra a_{bu}=ba_u,\\ a_{u_1+u_2}v=f(u_1+u_2)=a_{u_1}v+a_{u_2}v&\ra a_{u_1+u_2}=a_{u_1}+a_{u_2}, \eea \eeex$$ we have $$\bex \scrH\ni u\mapsto a_u\in \bbC \eex$$ is linear, and thus there exists some $h\in \scrH$ such that $$\bex a_u=\sef{h,u}\ra f(u)=\sef{h,u}k. \eex$$

 

(2). As noticed in (1), $$\bex \varphi(f_i\otimes e_j)(e_k)=\sef{e_j,e_k}f_i=\delta_{jk}f_i, \eex$$ and thus $$\bex \varphi(f_i\otimes e_j)(e_1,\cdots,e_n) =(f_1,\cdots,f_m)E_{ij}. \eex$$

 

(3). $$\beex \bea \sef{A,B}&=\sum_{i,j} \bar a_{ji}b_{ji},\\ \sef{E_{ij},E_{kl}} &=\sum_{p,q}\delta_{pi}\delta_{qj}\cdot \delta_{pk}\delta_{ql}\\ &=\delta_{ik}\delta_{jl}\sum_{p,q}\delta_{pi}\delta_{qj},\\ \sef{\varphi^{-1}(A),\varphi^{-1}(B)} &=\sum_{j,k} \sef{(Ae_j)\otimes e_j,(Be_k)\otimes e_k}\\ &=\sum_{j,k} \sef{Ae_j,Be_k}\sef{e_j,e_k}\\ &=\sum_{j,k} \sef{Ae_j,Be_j}\\ &=\sum_{i,j}\bar a_{ij}b_{ij}\\ &=\sef{A,B}. \eea \eeex$$

时间: 2024-09-27 01:41:12

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4的相关文章

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bilinear functional $$\bex F(u,v)=\sef{x,u}\sef{y,v}+\sef{z,u}\sef{w,v} \eex$$ is elementary.   Solutio

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}. \eex$$ Use this to show that if $A,B$ are any two $n\times n$ matrices, then $$\bex \sex{\ba{c

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matrix for $A\otimes B$ can be written in block form as follows: if $A=(a_{ij})$, then $$\bex A\otimes B=

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.   Solution. By Exercise I.2.2, $A=B^*B$ for some $B$. Let $$\bex B=(x_1,

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.   Solution. $$\beex \bea &\quad \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots \vee

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.2

Let $X$ be nay basis of $\scrH$ and let $Y$ be the basis biorthogonal to it. Using matrix multiplication, $X$ gives a linear transformation from $\bbC^n$ to $\scrH$. The inverse of this is given by $Y^*$. In the special case when $X$ is orthonormal (

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ converges. This is called the exponential of $A$. The matrix $A$ is always invertible and $$\bex (\exp A)^{-1}=\exp(-A). \eex$$ Conversely, every inver

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa convergent power series. This is called the Neumann series.   Solution.  Since $\sen{A}<1$, $$\bex \sum_{n=0}^\infty \sen{A}^n=\frac{1}{1-\sen{A}}<\infty. \

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.   Solution. $$\beex \bea &\quad \sef{x_1\wedge\cdots \wedge x_k,y_1\we