掌握数据科学应该学习哪些语言?

原始的数据科学是劳动密集型活动,但当你会用适合的语言进行工作时,数据科学应该是非常智能有趣的工作,会让你得到一些不容易看到的结论。

一般来说,数据科学中常常会涉及大量数据的处理,此时优化代码的性能非常重要。考虑到这些基本原则,来看看哪些语言是数据科学中应该掌握的:

R

R 发布于 1995 年,是 S 语言的一个分支,开源。目前由 R Foundation for Statistical Computing 提供技术支持。

优点:

  • 免费、开源,各种功能和函数琳琅满目
  • 专门为统计和数据分析开发的语言,即使基础安装也包含全面的统计功能和方法

数据可视化

缺点:

  • 性能,R 作为解释型语言,运行效率并不高
  • R 在统计学的表现很出色,但并不适用于通用编程

Package 的可靠性问题

小结:R 语言在统计和数据可视化方面非常强大,并且开源让它聚集了一帮活跃的贡献者,不过由于开发者良莠不齐,导致 Package 的可靠性方面会有点问题

Python

Guido van Rossum 在 1991 年推出 Python,开源。Python 广泛用于数据科学领域,目前主要的版本是 3.6 和 2.7。

优点:

  • Python 是一门主流编程语言,有着广泛的在线支持
  • 入门友好,易于学习
  • 有诸如 pandas,scikit-learn 和 Tensorflow 这样优秀的 package

缺点:

  • Python 作为动态语言,比 Java 还慢,而且容易出现类型错误
  • 对于特定的统计或数据分析,R 的封装会比 Python 更轻松;而在通用性方面,也有比 Python 更好的替代方案

小结:Python 是数据科学中很好的选择,而且,Google 的 TensorFlow 使得机器学习框架都偏向于Python

SQL

SQL 是结构化查询语言,用于存取数据以及查询、更新和管理关系数据库系统

优点:

  • 在查询、更新和管理关系数据库方面非常有效
  • 易读。类似这样的语句基本不会有歧义:SELECT name FROM users WHERE age > 18
  • SQLAlchemy 等模块使 SQL 与其他语言的集成变得简单明了

缺点:

  • 分析功能相当有限
  • SQL有很多不同的实现,如 PostgreSQL,SQLite,MariaDB。他们都是不同的,操作起来有点麻烦。

小结:SQL 作为数据处理语言比作为高级分析工具更有用

Java

Java 具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点,目前由 OSracle Corporation 支持。

优点:

  • 应用广泛,许多系统和应用都用 Java 写后端,能够将数据科学方法直接继承到现有的代码库
  • 健壮。对于重要任务的大数据应用,这点很宝贵
  • 适合编写高效的 ETL 生产代码和计算密集型机器学习算法

缺点:

  • 对于专用的统计分析,Java 的冗长度不适合作为首选。不过动态类型的脚本语言(如 R 和 Python)可以提高生产率
  • 与 R 这样特定领域的语言相比,Java 中没有大量可用于高级统计方法的库

小结:Java 其实不推荐作为数据科学语言的首选,尽管它能将数据科学代码无缝接入现有代码库,而且性能和安全性也是它的优势。但是作为开发者,使用 Java 就意味着没有其他语言特定的包可用。

Scala

Scala 是一门多范式的编程语言,类似 Java,由 Martin Odersky 开发并于 2004 年发布。

优点:

  • Scala + Spark = 高性能集群计算。它是大数据领域的杀手级应用框架
  • 多范式
  • Scala 被编译为 Java 字节码并在 JVM 上运行,这使 Scala 成为非常强大的通用语言,同时也非常适合数据科学

缺点:

  • Scala 并不太适合初学者
  • 语法和类型都比较复杂,这对于 Python 开发者其实是个比较陡峭的学习曲线

小结:对于集群处理大数据的环境,Scala + Spark 是一个很棒的解决方案。但对于少量数据而言,其他语言或许效率更高

Julia

Julia 是一款刚出现没几年的 JIT 科学计算语言, 为高性能科学计算而生。

优点:

  • JIT(just-in-time)语言,性能良好,还提供像 Python 等解释语言的脚本功能和动态类型
  • 为数值分析而生,但也同样能进行通用编程
  • 可读性好,而且 Julia 文档的中文翻译优秀(因为核心组有个中国人哈哈哈)

缺点:

  • 作为一种新语言,很难说已经可以成熟到大规模使用
  • 有限的包

小结:潜力无限,但就目前而言,还不如 R 和 Python 一样成熟稳定

MATLAB

MATLAB 是 MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,在数学类科技应用软件中在数值计算方面首屈一指。

优点:

  • 专为数值计算而设计,非常适合具有复杂数学计算的定量应用,如信号处理、傅里叶变换、图像处理等
  • 数据可视化,MATLAB 内置了绘图功能
  • 作为数学本科课程的一部分,它在物理、工程、应用数学等领域有着广泛应用

缺点:

  • 还挺贵的(获取 MATLAB 及工具箱报价)
  • 不适用于通用编程

小结:MATLAB 最适合数据密集型应用,毕竟它就是为此而生的。

总结

本文只是个快速指南,来帮助选择哪种语言适合做数据科学。当然,除了上述介绍的语言外,C++、JavaScript、Perl 还有 Ruby 也可以解决一些数据问题,其中的关键在于你的使用需求,以及个人的喜欢等。  

本文作者:佚名

来源:51CTO

时间: 2024-11-02 16:27:11

掌握数据科学应该学习哪些语言?的相关文章

大数据到底怎么学:数据科学概论与大数据学习误区

"数据科学家走在通往无所不知的路上,走到尽头才发现,自己一无所知."-Will Cukierski,Head of Competitions & Data Scientist at Kaggle 最近不少网友向我咨询如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题.由于大数据技术涉及内容太庞杂,大数据应用领域广泛,而且各领域和方向采用的关键技术差异性也会较大,难以三言两语说清楚,本文从数据科学和大数据关键技术体系角度,来说

关于数据科学的那些事

更多深度文章,请关注云计算频道:https://yq.aliyun.com/cloud 请收下这份关于人工智能的根目录--博客整理系列(一) 关于数据科学的那些事--博客整理系列(二) 机器学习必备手册--博客整理系列(三) 扩展眼界的都在这--博客整理系列(四) 深度学习必备手册(上)--博客整理系列(五) 深度学习必备手册(下)--博客整理系列(六) 随着科技的发展,人类社会拥有数据的规模增长很快,每时每刻.从天到地都有大量数据被产生和存储下来.这些数据被积累下来,到底怎么样使用才能创造出我

研究了数千个在线课程,我整理了一份数据科学入门课清单

一年前,我退出了加拿大最好的计算机科学项目之一,利用在线资源开始创建属于自己的数据科学硕士课程.我意识到我可以通过edX, Coursera,以及Udacity学习我所需要的一切,而且学的更快.效率更高,学费更低. 数据可视化:Alanah Ryding 现在我差不多快要完成了.我上了很多数据科学相关的课程,旁听过更多课程的部分内容.我知道对于一个准备成为数据分析师或数据科学家的初学者来说有哪些选择,以及什么样的技能是必需的.几个月前,我开始创建一个用评价驱动的指南,用来为数据科学中的每个主题推

《Python数据科学实践指南》——0.2 如何成为数据科学家

0.2 如何成为数据科学家 读者应该知道这个问题很难回答,失败的原因总是相似的,成功的经历却各有不同.从来没有人靠复制他人的经历就能获得同样的成就,就像"人不能两次踏入同一条河流"的哲学观点一样,没有人可以复制别人的经历,更何谈成就.因此在回答这个问题时,我只假设一些概念上的前提条件:良好的计算机科学基础,较高的英文读写水平,极强的自学能力,还有一些个人品质比如耐心.毅力.乐于分享,等等.不过最重要的还是"兴趣",我相信能花上几十块钱购买这本书的读者一定是有兴趣的,

《Python数据科学实践指南》一0.2 如何成为数据科学家

0.2 如何成为数据科学家 读者应该知道这个问题很难回答,失败的原因总是相似的,成功的经历却各有不同.从来没有人靠复制他人的经历就能获得同样的成就,就像"人不能两次踏入同一条河流"的哲学观点一样,没有人可以复制别人的经历,更何谈成就.因此在回答这个问题时,我只假设一些概念上的前提条件:良好的计算机科学基础,较高的英文读写水平,极强的自学能力,还有一些个人品质比如耐心.毅力.乐于分享,等等.不过最重要的还是"兴趣",我相信能花上几十块钱购买这本书的读者一定是有兴趣的,

《Python数据科学实践指南》——0.2节如何成为数据科学家

0.2 如何成为数据科学家读者应该知道这个问题很难回答,失败的原因总是相似的,成功的经历却各有不同.从来没有人靠复制他人的经历就能获得同样的成就,就像"人不能两次踏入同一条河流"的哲学观点一样,没有人可以复制别人的经历,更何谈成就.因此在回答这个问题时,我只假设一些概念上的前提条件:良好的计算机科学基础,较高的英文读写水平,极强的自学能力,还有一些个人品质比如耐心.毅力.乐于分享,等等.不过最重要的还是"兴趣",我相信能花上几十块钱购买这本书的读者一定是有兴趣的,因

用机器学习研究UFO目击报告!数据科学之魅:隐含狄利克雷分布

更多深度文章,请关注:https://yq.aliyun.com/cloud 本篇文章是讨论热门机器学习算法的文章合集中的一篇.如果你想了解更加详尽的背景知识以及我的写作初衷,请阅读这篇文章. 背景 隐含狄利克雷分布(LDA)算法曾被"提出"过两次,第一次提出是在2000年,用来根据遗传信息将人群划分至K个种族,到了2003年,LDA又一次被提出,用来在文本语料库中构建主题模型.而在本篇文章中,我将专注于主题建模部分的介绍.但是LDA在众多领域有着极为广泛的应用,遗传应用也是其中非常有

如何真正学好数据科学?

作为一个全新的领域,数据科学的飞速发展让人激动.数据科学在带来巨大经济效益的同时,人们在数据科学技术方面的知识沟也逐渐出现,这意味着更多的人需要试图了解和学习数据科学. "我该如何学习数据科学"这个问题是初学者需要迈过的第一个门槛.大家在解决这个问题的时候,通常采用的办法是给自己安排一大串的课程去学习,当然还有一大摞的课本来阅读,线性代数和统计学成为大家必须要打交道的"新朋友".我们使出了"洪荒之力"拼了命地学习,我们甚至没有编程的学习背景,但是

2017数据科学与机器学习行业现状调查 Python是最受欢迎的语言

今年,Kaggle有史以来第一次对人工智能领域进行了深度调查,旨在全面了解数据科学和机器学习的概况.本次调查收到了 16000 多份答卷,庞大的调查数据为我们提供了有关从业者.业界最新动态以及如何进入该行业的数据支撑.以下报告包括本次调查的几个主要结果,其中包括: 尽管Python很可能是机器学习最常用的编程语言,但统计学家使用最多的是 R 语言. 数据科学家的平均年龄在 30 岁左右,但是这个数字在不同的国家有所不同.例如,印度受访者的平均年龄要比澳大利亚的小 9 岁. 被调查者教育程度最多是