8天玩转并行开发——第四天 同步机制(上)

     在并行计算中,不可避免的会碰到多个任务共享变量,实例,集合。虽然task自带了两个方法:task.ContinueWith()和Task.Factory

.ContinueWhenAll()来实现任务串行化,但是这些简单的方法远远不能满足我们实际的开发需要,从.net 4.0开始,类库给我们提供了很多

的类来帮助我们简化并行计算中复杂的数据同步问题。

 

大体上分为二种:

①   并发集合类:           这个在先前的文章中也用到了,他们的出现不再让我们过多的关注同步细节。

②  轻量级同步机制:      相对于老版本中那些所谓的重量级同步机制而言,新的机制更加节省cpu的额外开销。

 

关于并发集合类没什么好讲的,如果大家熟悉非线程安全的集合,那么这些并发的集合对你来说小菜一碟,这一篇和下一篇我们仔细来玩玩这

些轻量级的同步机制。

 

一:Barrier(屏障同步)

 

1:基本概念

    msdn对它的解释是:使多个任务能够采用并行方式依据某种算法在多个阶段中协同工作。乍一看有点不懂,没关系,我们采取提干法。

”多个任务“,”多个阶段”,“协同”,仔细想想知道了,下一阶段的执行必须等待上一个阶段中多task全部执行完,那么我们实际中有这样

的需求吗?当然有的,比如我们数据库中有100w条数据需要导入excel,为了在数据库中加速load,我们需要开多个任务去跑,比如这

里的4个task,要想load产品表,必须等4个task都跑完用户表才行,那么你有什么办法可以让task为了你两肋插刀呢?它就是Barrier。

 

好,我们知道barrier叫做屏障,就像下图中的“红色线”,如果我们的屏障设为4个task就认为已经满了的话,那么执行中先到的task必须等待

后到的task,通知方式也就是barrier.SignalAndWait(),屏障中线程设置操作为new Barrier(4,(i)=>{})。

 

啰嗦了半天,还是上下代码说话:

using System.Collections.Concurrent;
using System.Threading.Tasks;
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Linq;
using System.Threading;

class Program
{
//四个task执行
static Task[] tasks = new Task[4];

static Barrier barrier = null;

static void Main(string[] args)
{
barrier = new Barrier(tasks.Length, (i) =>
{
Console.WriteLine("**********************************************************");
Console.WriteLine("\n屏障中当前阶段编号:{0}\n", i.CurrentPhaseNumber);
Console.WriteLine("**********************************************************");
});

for (int j = 0; j < tasks.Length; j++)
{
tasks[j] = Task.Factory.StartNew((obj) =>
{
var single = Convert.ToInt32(obj);

LoadUser(single);
barrier.SignalAndWait();

LoadProduct(single);
barrier.SignalAndWait();

LoadOrder(single);
barrier.SignalAndWait();
}, j);
}

Task.WaitAll(tasks);

Console.WriteLine("指定数据库中所有数据已经加载完毕!");

Console.Read();
}

static void LoadUser(int num)
{
Console.WriteLine("当前任务:{0}正在加载User部分数据!", num);
}

static void LoadProduct(int num)
{
Console.WriteLine("当前任务:{0}正在加载Product部分数据!", num);
}

static void LoadOrder(int num)
{
Console.WriteLine("当前任务:{0}正在加载Order部分数据!", num);
}
}

2:死锁问题

    先前的例子我们也知道,屏障必须等待4个task通过SignalAndWait()来告知自己已经到达,当4个task全部达到后,我们可以通过

barrier.ParticipantsRemaining来获取task到达状态,那么如果有一个task久久不能到达那会是怎样的情景呢?好,我举个例子。

using System.Collections.Concurrent;
using System.Threading.Tasks;
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Linq;
using System.Threading;

class Program
{
//四个task执行
static Task[] tasks = new Task[4];

static Barrier barrier = null;

static void Main(string[] args)
{
barrier = new Barrier(tasks.Length, (i) =>
{
Console.WriteLine("**********************************************************");
Console.WriteLine("\n屏障中当前阶段编号:{0}\n", i.CurrentPhaseNumber);
Console.WriteLine("**********************************************************");
});

for (int j = 0; j < tasks.Length; j++)
{
tasks[j] = Task.Factory.StartNew((obj) =>
{
var single = Convert.ToInt32(obj);

LoadUser(single);
barrier.SignalAndWait();

LoadProduct(single);
barrier.SignalAndWait();

LoadOrder(single);
barrier.SignalAndWait();

}, j);
}

Task.WaitAll(tasks);

barrier.Dispose();

Console.WriteLine("指定数据库中所有数据已经加载完毕!");

Console.Read();
}

static void LoadUser(int num)
{
Console.WriteLine("\n当前任务:{0}正在加载User部分数据!", num);

if (num == 0)
{
//num=0:表示0号任务
//barrier.ParticipantsRemaining == 0:表示所有task到达屏障才会退出
// SpinWait.SpinUntil: 自旋锁,相当于死循环
SpinWait.SpinUntil(() => barrier.ParticipantsRemaining == 0);
}
}

static void LoadProduct(int num)
{
Console.WriteLine("当前任务:{0}正在加载Product部分数据!", num);
}

static void LoadOrder(int num)
{
Console.WriteLine("当前任务:{0}正在加载Order部分数据!", num);
}
}

我们发现程序在加载User表的时候卡住了,出现了类似死循环,这句SpinWait.SpinUntil(() => barrier.ParticipantsRemaining == 0)中

的ParticipantsRemaining==0 永远也不能成立,导致task0永远都不能退出,然而barrier还在一直等待task0调用SignalAndWait来结束屏障。

结果就是造成了相互等待的尴尬局面,我们下个断点看看情况。

 

3:超时机制

    当我们coding的时候遇到了这种问题还是很纠结的,所以我们必须引入一种“超时机制”,如果在指定的时候内所有的参与者(task)都

没有到达屏障的话,我们就需要取消这些参与者的后续执行,幸好SignalAndWait给我们提供了超时的重载,为了能够取消后续执行,我们

还要采用CancellationToken机制。

using System.Collections.Concurrent;
using System.Threading.Tasks;
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Linq;
using System.Threading;

class Program
{
//四个task执行
static Task[] tasks = new Task[4];

static Barrier barrier = null;

static void Main(string[] args)
{
CancellationTokenSource cts = new CancellationTokenSource();

CancellationToken ct = cts.Token;

barrier = new Barrier(tasks.Length, (i) =>
{
Console.WriteLine("**********************************************************");
Console.WriteLine("\n屏障中当前阶段编号:{0}\n", i.CurrentPhaseNumber);
Console.WriteLine("**********************************************************");
});

for (int j = 0; j < tasks.Length; j++)
{
tasks[j] = Task.Factory.StartNew((obj) =>
{
var single = Convert.ToInt32(obj);

LoadUser(single);

if (!barrier.SignalAndWait(2000))
{
//抛出异常,取消后面加载的执行
throw new OperationCanceledException(string.Format("我是当前任务{0},我抛出异常了!", single), ct);
}

LoadProduct(single);
barrier.SignalAndWait();

LoadOrder(single);
barrier.SignalAndWait();

}, j, ct);
}

//等待所有tasks 4s
Task.WaitAll(tasks, 4000);

try
{
for (int i = 0; i < tasks.Length; i++)
{
if (tasks[i].Status == TaskStatus.Faulted)
{
//获取task中的异常
foreach (var single in tasks[i].Exception.InnerExceptions)
{
Console.WriteLine(single.Message);
}
}
}

barrier.Dispose();
}
catch (AggregateException e)
{
Console.WriteLine("我是总异常:{0}", e.Message);
}

Console.Read();
}

static void LoadUser(int num)
{
Console.WriteLine("\n当前任务:{0}正在加载User部分数据!", num);

if (num == 0)
{
//自旋转5s
if (!SpinWait.SpinUntil(() => barrier.ParticipantsRemaining == 0, 5000))
return;
}

Console.WriteLine("当前任务:{0}正在加载User数据完毕!", num);
}

static void LoadProduct(int num)
{
Console.WriteLine("当前任务:{0}正在加载Product部分数据!", num);
}

static void LoadOrder(int num)
{
Console.WriteLine("当前任务:{0}正在加载Order部分数据!", num);
}
}

二:spinLock(自旋锁)

    我们初识多线程或者多任务时,第一个想到的同步方法就是使用lock或者Monitor,然而在4.0 之后给我们提供了另一把武器spinLock,

如果你的任务持有锁的时间非常短,具体短到什么时候msdn也没有给我们具体的答案,但是有一点值得确定的时,如果持有锁的时候比较

短,那么它比那些重量级别的Monitor具有更小的性能开销,它的用法跟Monitor很相似,下面举个例子,Add2方法采用自旋锁。

using System.Collections.Concurrent;
using System.Threading.Tasks;
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Linq;
using System.Threading;

class Program
{
static SpinLock slock = new SpinLock(false);

static int sum1 = 0;

static int sum2 = 0;

static void Main(string[] args)
{
Task[] tasks = new Task[100];

for (int i = 1; i <= 100; i++)
{
tasks[i - 1] = Task.Factory.StartNew((num) =>
{
Add1((int)num);

Add2((int)num);

}, i);
}

Task.WaitAll(tasks);

Console.WriteLine("Add1数字总和:{0}", sum1);

Console.WriteLine("Add2数字总和:{0}", sum2);

Console.Read();
}

//无锁
static void Add1(int num)
{
Thread.Sleep(100);

sum1 += num;
}

//自旋锁
static void Add2(int num)
{
bool lockTaken = false;

Thread.Sleep(100);

try
{
slock.Enter(ref lockTaken);
sum2 += num;
}
finally
{
if (lockTaken)
slock.Exit(false);
}
}
}

时间: 2024-12-31 03:05:17

8天玩转并行开发——第四天 同步机制(上)的相关文章

8天玩转并行开发——第五天 同步机制(下)

         承接上一篇,我们继续说下.net4.0中的同步机制,是的,当出现了并行计算的时候,轻量级别的同步机制应运而生,在信号量这一块 出现了一系列的轻量级,今天继续介绍下面的3个信号量 CountdownEvent,SemaphoreSlim,ManualResetEventSlim.   一:CountdownEvent      这种采用信号状态的同步基元非常适合在动态的fork,join的场景,它采用"信号计数"的方式,就比如这样,一个麻将桌只能容纳4个 人打麻将,如果

8天玩转并行开发——第八天 用VS性能向导解剖你的程序

原文:8天玩转并行开发--第八天 用VS性能向导解剖你的程序            最后一篇,我们来说说vs的"性能向导",通常我们调试程序的性能一般会使用Stopwatch,如果希望更加系统的了解程序,我们就需要 用到"性能向导",通过性能报告便于我们快速的发现并找到潜在的性能问题.   首先我们上一段需要改进的代码: 1 using System; 2 using System.Collections.Generic; 3 using System.Linq;

8天玩转并行开发——第六天 异步编程模型

原文:8天玩转并行开发--第六天 异步编程模型             在.net里面异步编程模型由来已久,相信大家也知道Begin/End异步模式和事件异步模式,在task出现以后,这些东西都可以被task包装 起来,可能有人会问,这样做有什么好处,下面一一道来.   一: Begin/End模式 1: 委托     在执行委托方法的时候,我们常常会看到一个Invoke,同时也有一对你或许不常使用的BeginInvoke,EndInvoke方法对,当然Invoke方法 是阻塞主线程,而Begi

8天玩转并行开发——第七天 简要分析任务与线程池

原文:8天玩转并行开发--第七天 简要分析任务与线程池          其实说到上一篇,我们要说的task的知识也说的差不多了,这一篇我们开始站在理论上了解下"线程池"和"任务"之间的关系,不管是 说线程还是任务,我们都不可避免的要讨论下线程池,然而在.net 4.0以后,线程池引擎考虑了未来的扩展性,已经充分利用多核微处理器 架构,只要在可能的情况下,我们应该尽量使用task,而不是线程池.   首先看一下task的结构 从图中我们可以看出Task.Factor

8天玩转并行开发——第三天 plinq的使用

原文:8天玩转并行开发--第三天 plinq的使用        相信在.net平台下,我们都玩过linq,是的,linq让我们的程序简洁优美,简直玩的是爱不释手,但是传统的linq只是串行代码,在并行的 年代如果linq不支持并行计算那该是多么遗憾的事情啊.    当然linq有很多种方式,比如linq to sql ,xml,object 等等,如果要将linq做成并行还是很简单的,这里我就举一个比较实际一点的例子, 我们知道为了更快的响应用户操作,码农们想尽了各种办法,绞尽了脑汁,其中有一

8天玩转并行开发——第一天 Parallel的使用

      随着多核时代的到来,并行开发越来越展示出它的强大威力,像我们这样的码农再也不用过多的关注底层线程的实现和手工控制, 要了解并行开发,需要先了解下两个概念:"硬件线程"和"软件线程".   1. 硬件线程     相信大家手头的电脑都是双核以上的,像我这样古董的电脑都是双核的,这样的双核叫做物理内核.   硬件线程又叫做逻辑内核,我们可以在"任务管理器"中查看"性能"标签页,如下图,我们知道有2个硬件线程.    

8天玩转并行开发——第二天 Task的使用

     在我们了解Task之前,如果我们要使用多核的功能可能就会自己来开线程,然而这种线程模型在.net 4.0之后被一种称为基于 "任务的编程模型"所冲击,因为task会比thread具有更小的性能开销,不过大家肯定会有疑惑,任务和线程到底有什么区别?   1:任务是架构在线程之上的,也就是说任务最终还是要抛给线程去执行. 2:任务跟线程不是一对一的关系,比如开10个任务并不是说会开10个线程,这一点任务有点类似线程池,但是任务相比线程池有很小       的开销和精确的控制.  

iOS开发系列--并行开发其实很容易

概览 大家都知道,在开发过程中应该尽可能减少用户等待时间,让程序尽可能快的完成运算.可是无论是哪种语言开发的程序最终往往转换成汇编语言进而解释成机器码来执行.但是机器码是按顺序执行的,一个复杂的多步操作只能一步步按顺序逐个执行.改变这种状况可以从两个角度出发:对于单核处理器,可以将多个步骤放到不同的线程,这样一来用户完成UI操作后其他后续任务在其他线程中,当CPU空闲时会继续执行,而此时对于用户而言可以继续进行其他操作:对于多核处理器,如果用户在UI线程中完成某个操作之后,其他后续操作在别的线程

如何同时启用IIS与tomcat,如何配置两个服务器并行开发?

问题描述 如何同时启用IIS与tomcat,如何配置两个服务器并行开发? 解决方案 解决方案二:不会帮你顶顶解决方案三:安装IIS然后启动,默认端口80,再安tomcat然后启动,默认端口8080,就行了.难道还会冲突?解决方案四:引用1楼javafx的回复: 不会帮你顶顶 端口不一样的时候应该没问题啊!解决方案五:你可以去Google一下IIS+Tomcat,是有办法可以解决IIS与Tomcat服务器整合的.解决方案六:这个可以不会~~~解决方案七:就断开TOMCAT的端口在server.xm