深入理解Java虚拟机:OutOfMemory实战

在Java虚拟机规范的描述中,除了程序计数器外,虚拟机内存的其他几个运行时区域都有发生OutOfMemoryError(下文称OOM)异常的可能,本节将通过若干实例来验证异常发生的场景。并且会初步介绍几个与内存相关的最基本的虚拟机参数。

本节内容的目的有两个:第一,通过代码验证Java虚拟机规范中描述的各个运行时区域存储的内容;第二,希望读者在工作中遇到实际的内存溢出异常时,能根据异常的信息快速判断是哪个区的内存溢出,知道什么样的代码可能导致这些区域内存溢出,以及出现这些异常后该如何处理。

下文代码的开头都注释了执行时所需要设置的虚拟机启动参数(注释中“VM args”后面跟着的参数),这些参数对实验的结果有直接影响,在调试代码的时候千万不要忽略。如果使用控制台命令来执行程序,那直接跟在Java命令后书写就可以。如果使用的是Eclipse IDE,则可以参考下图在Debug/Run页签中的设置:

下文的代码都是基于Sun公司的HotSpot虚拟机运行的,对于不同公司的不同版本的虚拟机,参数和程序运行的结果可能会有所差别。

Java堆溢出 

Java堆用于存储对象实例,只要不断的创建对象,并且保证GC Roots到对象之间有可达路径来避免垃圾回收机制来清除这些对象,那么对象数量到达最大堆容量限制后就会产生内存溢出异常。

下面代码中,Java堆的大小限制为20M,不可扩展(将堆的最小值-Xms参数与最大值-Xmx最大值参数设置为一样,避免自动扩展)通过参数-XX:+HeapDumpOnOutOfMemoryError,可以让虚拟机在出现内存溢出时Dump出当前的内存转储快照以便事后进行分析。 

?


1

2

3

4

5

6

7

8

9

10

11

12

13

/**

 * VM Args:-Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError

 */

public class HeapOOM {

    static class OOMObject {}

 

    public static void main(String[] args) {

        List<OOMObject> list = new ArrayList<OOMObject>();

        while (true) {

            list.add(new OOMObject());

        }

    }

}

运行结果:

Java堆内存的OOM异常时实际应用中常见的内存溢出异常情况。当出现Java对内存溢出时,异常堆栈信息“java.lang.OutOfMemoryError”会跟着进一步提示“Java heap space”。

要解决这个区域的异常,一般的手段是先通过内存映像工具如(Eclipse MemoryAnalyzer)对Dump出来的堆转储快照进行分析,重点是确认内存中的对象是否是必要的,也就是要先分析到底是出现了内存泄露(Memory Leak)还是内存溢出(Memory Overflow)。

如果是内存泄露,可进一步通过工具查看泄露对象到GC Roots的引用链,于是就能找到泄露对象是通过怎样的路径与GC Roots相关联并导致垃圾回收器无法自动回收它们的。掌握了泄露对象的类型信息及GC Roots引用链的信息,就可以比较容易确定发生泄露的代码位置。 

如果不存在内存泄露,换句话说,就是内存中的对象确实都还必须存活着,那就应当检查虚拟机堆参数(-Xmx与-Xms),与机器物理内存对比看是否还可以调大,从代码上检查是否存在某些对象生命周期过长、持有状态时间过长的情况,尝试减少程序运行期的内存消耗。 

虚拟机栈和本地方法栈溢出

由于在Hotspot虚拟机中并不区分虚拟机栈和本地方法栈,因此,对于Hotspot来说,虽然-Xoss参数(设置本地方法栈大小)存在,但实际上是无效的,栈容量只由-Xss参数设定,关于虚拟机栈和本地方法栈可以出现以下两周异常: 

  • 如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常 
  • 如果虚拟机在扩展时无法申请到足够的内存空间,则抛出OutOfMemoryError异常

下面这个例子,将实验范围限制于单线程中的操作,尝试了下面两种方法均无法让需积极产生OutOfMemoryError异常,尝试的结果都是获得StackOverflowError异常:

  • 使用-Xss 参数减少栈内存容量,结果:抛出StackOverflowError异常,异常出现时输出的栈的深度相应缩小 
  • 定义了大量的本地变量,增大此方法帧中本地变量表的长度。结果:抛出StackOverflowError异常时输出的堆栈深度相应减小。 

测试代码如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

/**

 * VM Args: -Xss128K

 */

public class JavaVMStackSOF {

 

    private int stackLength = 1;

 

     

    public void stackLeak() {

        stackLength++;

        stackLeak();

    }

 

    public static void main(String[] args) throws Throwable {

        JavaVMStackSOF oom = new JavaVMStackSOF();

        try {

            oom.stackLeak();

        catch (Throwable e) {

            System.out.println("stack length:" + oom.stackLength);

            throw e;

        }

    }

}

运行结果:

实验结果表明:在单个线程下,无论是由于栈帧太大还是虚拟机容量太小,当内存无法分配的时候虚拟机都抛出的是StackOverflowError。 

如果测试不限于单线程,通过不断的建立线程的方式倒是可以产生内除溢出异常,但是这样产生的内存溢出与栈空间是否够大不存在任何联系,或者说,为每个线程的栈分配的内存越大,反而越容易产生内存溢出异常。

原因是,操作系统分配给每个线程的内存是有限的,譬如32位Windows限制为2GB。虚拟机提供了参数来控制Java堆和方法区的这两部分内存的最大值。剩余的内存为2G(操作系统内存)减去Xmx(堆最大容量),再减去MaxPermSize(最大方法区容量),程序计数器消耗的内存很小,可以忽略。如果虚拟机进程本身耗费的内存不计算在内,剩下的内存就由虚拟机栈和本地方法栈“瓜分”了。每个线程分配到栈容量越大,可以建立的线程数自然越少,建立线程时越容易把剩余的内存耗尽。

这一点需要在开发多线程的应用时特别注意,出现StackOverflowError异常时有错误堆栈可以阅读,相对来说,比较容易找到问题的所在。而且,如果使用虚拟机默认参数,栈深度在大多数情况下(因为每个方法压入栈的帧大小并不是一样的,所以只能说在大多数情况下)达到1000~2000完全没有问题,对于正常的方法调用(包括递归),这个深度应该完全够用了。但是,如果是建立过多线程导致的内存溢出,在不能减少线程数或者更换64位虚拟机的情况下,就只能通过减少最大堆和减少栈容量来换取更多的线程了。如果没有这方面的处理经验,这种通过“减少内存”的手段来解决内存溢出的方式会比较难以想到。

以下代码通过创建多线程导致内存溢出异常:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

/**

 * VM Args: -Xss2M(这时候不妨设置大些)

 */

public class JavaVMStackOOM {

 

    private void dontStop() {

        while(true) {}

    }

     

    public void stackLeakByThread() {

        while(true) {

            Thread thread = new Thread(new Runnable() {

                public void run() {

                    dontStop();

                }

            });

             

            thread.start();

        }

    }

     

    public static void main(String[] args) {

        JavaVMStackOOM oom = new JavaVMStackOOM();

        oom.stackLeakByThread();

    }

}

注意:特别提示一下,如果要尝试运行上面这段代码,记得要先保存当前的工作。由于在Windows平台的虚拟机中,Java的线程时映射到操作系统的内核线程上的,因此上述代码执行时有较大风险,可能会导致操作系统假死。

运行结果:

方法区和运行时常量池溢出

由于运行时常量池是方法去的一部分,因此这两个区域的溢出测试可以放在一起进行。

String.intern()方法是一个native方法,它的作用是:如果字符串常量池中已经包含一个等于此String对象的字符串,则返回代表池中这个字符串的string对象;否则,将此String对象包含的字符串添加到常量池中,并返回此String对象的引用。 在JDK1.6及之前的版本中,由于常量池分配在永久代中,我们可以通过-XX:PermSize和-XX:MaxPermSize限制方法区大小,从而间接限制其中常量池的容量,代码如下:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

import java.util.ArrayList;

import java.util.List;

 

/**

 * VM Args: -XX:PermSize=10M -XX:MaxPermSize=10M

 */

public class RuntimeConstantPoolOOM{

    public static void main(String[] args){

        // 使用List保持着常量池引用,避免Full GC 回收常量池行为

        List<String> list = new ArrayList<String>();

        //10MB的PermSize在int范围内足够产生OOM了

        int i = 0;

        while(true) {

            //调用intern方法,将字符串全部放在常量池中

            list.add(String.valueOf(i++).intern());

        }

    }

}

运行结果(JDK1.6 HotSpot JVM):

从运行结果中可以看到,运行时常量池溢出,在OutOfMemoryError后面跟随的提示信息是“PermGen space”,说明运行时常量池属于方法区(HotSpot虚拟机中的永久代)的一部分。

方法区用于存放Class相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。对于这些区域的测试,基本的思路是运行时产生大量的类去填满方法区,直到溢出。这里借助CGLib直接操作字节码运行时生成了大量的动态类。

值得注意的是,我们在这个例子中模拟的场景并非纯粹是一个实验,这样的应用经常会出现在实际应用中:当前很多主流框架如Spring、Hibernate,在对类进行增强时,都会使用到CGLib这类字节码技术,增强的类越多,就需要越大的方法区来保证动态生成的Class可以载入内存。另外,JVM上的动态语言(例如Groovy等)通常都会持续创建类来实现语言的动态性,随着这类语言越来越流行,也越来越容易遇到以下代码类似的溢出场景:

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

import java.lang.reflect.Method;

import com.jvm.oom.HeapOOM.OOMObject;

import net.sf.cglib.proxy.Enhancer;

import net.sf.cglib.proxy.MethodInterceptor;

import net.sf.cglib.proxy.MethodProxy;

 

/**

 * VM Args: -XX:PermSize=10M -XX:MaxPermSize=10M

 */

public class JavaMethodAreaOOM{

 

    public static void main(String[] args) {

        while(true){

            Enhancer e = new Enhancer();

            e.setSuperclass(OOMObject.class);

            e.setUseCache(false);

            e.setCallback(new MethodInterceptor(){

                public Object intercept(Object obj, Method method, 

                        Object[] args, MethodProxy proxy) throws Throwable{

                    return proxy.invokeSuper(obj,args);

                }

            });

            e.create();

        }

    }

}

运行结果:

?


1

Caused by: java.lang.OutOfMemoryError: PermGen space

方法区的溢出是一种常见的内存溢出异常,一个类要被垃圾收集器回收掉,判断条件是比较苛刻的。在经常动态生成大量Class应用中,需要特别注意类的回收情况。这类除了上面提到的程序使用了CGLib字节码增强和动态语言之外,常见的还有:还有大量jsp或动态产生jsp文件的应用(JSP第一次运行时需要编译为Java类)、基于OSGi的应用(即使是同一个类文件,被不同的加载器加载也会视为不同的类)等。

本机直接内存溢出 

DirectMemory容量可通过-XX:MaxDirectMemorySize指定,如果不指定,则默认与Java堆最大值(-Xmx指定)一样,下面的代码越过了DirectByteBuffer类,直接通过反射获取Unsafe实例进行内存分配(Unsafe类的getUnsafe()方法限制了只有引导类加载器才会返回示例,也就是设计者希望只有rt.jar中的类才能使用Unsafe的功能)。因为虽然使用DirectByteBuffer分配内存也会抛出内存溢出异常,但它抛出异常时并没有真正向操作系统申请分配内存,而是通过计算得知无法分配,于是手动抛出异常,真正申请分配内存的方法是unsafe.allocateMemory()。

?


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

import java.lang.reflect.Field;

import sun.misc.Unsafe;

 

/**

 * VM Args: -Xmx20M -XX:MaxDirectMemorySize=10M

 */

public class DirectMemoryOOM{

    private static final int _1MB = 1024*1024;

     

    public static void main(String[] args) throws Exception {

        Field unsafeField = Unsafe.class.getDeclaredFields()[0];

        unsafeField.setAccessible(true);

        Unsafe unsafe = (Unsafe)unsafeField.get(null);

        while(true){

            unsafe.allocateMemory(_1MB);

        }

    }

}

运行结果:

由DirectMemory导致的内存溢出,一个明显的特征是在Heap Dump文件中不会看见明显的异常,如果发现OOM之后文件很小,而程序中有直接或简介使用了NIO,那就可以考虑一下是不是这方面的原因。

时间: 2024-11-01 14:13:15

深入理解Java虚拟机:OutOfMemory实战的相关文章

深入理解Java虚拟机:JVM高级特性与最佳实践

目 录 [ - ] <深入理解Java虚拟机:JVM高级特性与最佳实践>前言 <深入理解Java虚拟机:JVM高级特性与最佳实践>内容特色 <深入理解Java虚拟机:JVM高级特性与最佳实践>目录 第1章 走近Java 1.1 概述 1.2 Java技术体系 1.3 Java发展史 1.4 展望Java技术的未来 1.4.1 模块化 1.4.2 混合语言 1.4.3 多核并行 1.4.4 进一步丰富语法 1.4.5 64位虚拟机 1.5 实战:自己编译JDK 1.5.1

周志明的《深入理解JAVA虚拟机》中基于栈的指令集和基于寄存器的指令集,要好好学习

这个知识点是我以前没有的,所以我以前发贴表示完全不理解JAR字节码的执行过程及以本地代码交互的过程. 现在有了这个知识点. 那对JVM的运行机制就了解了大概了. 周志明的<深入理解JAVA虚拟机>这书是本好书呀. 但由于我个人阅读习惯,三天之内要草草看一次的.所以没有按书上代码操作. 以后工作如何有应用时,再慢慢深入吧. ~~~~~~~~~~~~~~~ NET CLR 和 Java VM 都是堆疊式虛擬機器(Stack-Based VM),也就是說,它們的指令集(Instruction Set

java-《深入理解Java虚拟机》有关methodHandle的代码问题?

问题描述 <深入理解Java虚拟机>有关methodHandle的代码问题? 以下代码书上说是输出"i am grandfather",但远行实际输出为"i am father" class Test { class GrandFather { void thinking() { System.out.println("i am grandfather"); } } class Father extends GrandFather {

《深入理解Java虚拟机》读书笔记

背景 并发处理的广泛应用是使得Amdahl定律代替摩尔定律成为计算机性能发展的源动力的根本原因,也是人类压榨计算机运算能力最有力的武器 Amdahl 定律通过系统中的并行化与串行化的比重来描述多处理器系统能获得的运算加速能力. 摩尔定律则用于描述处理器晶体管数量与运行效率之间的发展关系. 这两个定律的更替代表了近年来硬件发展从追求处理器频率到追求多核心并行处理的发展过程. 高效并发 物理机上的并发解决方案 在当前这个多核处理器时代,"让计算机并发执行若干个运算任务"和"更充分

深入理解JAVA虚拟机--Idea远程执行本地Java代码

工程配置 上传文件配置 运行结果 源代码 联系作者 今天在看深入理解JAVA虚拟机的9.3节,作者实现了一个远程执行功能.这个功能可以在远程服务器中临时执行一段程序代码,而去不依赖jdk版本,不改变原有服务端程序的部署,不依赖任何第三方库,不入侵原有的程序,不会对原有程序运行带来任何影响.程序的原理可以去看书,本文主要结合IDEA把使用过程记录一下 工程配置 新建一个工程,把书中的5个类倒入,然后写一个测试类(test),这个类的代码就是要让远程服务器自动执行的.test.jsp是用来触发远程服

深入理解java虚拟机的故障处理工具_java

前言 本文主要给大家介绍的是java虚拟机的故障处理工具,文中提到这些工具包括: 名称 主要作用 jps JVM process Status Tool, 显示指定系统内所有的HotSpot虚拟机进程.通常是本地主机 jstat JVM Statistics Monitoring Tool,用于收集HotSpot虚拟机各方面的运行数据 jinfo Configuration Info for java, 显示虚拟机配置信息 jmap Memory Map for Java, 生成虚拟机的内存存储

Java转行之路—《深入理解JAVA虚拟机总结》(一)

Java转行之路-<深入理解JAVA虚拟机总结>(一) Java虚拟机运行时数据区 程序计数器(Program Counter Register) (1)Little Space (2)当前所执行字节码的行号指示器(3)每条线程都有独立的程序计数器--线程切换后回到正确的位置ps.多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的 虚拟机栈(Virtual Machine Stacks) (1) 线程私有,生命周期与线程相同(2) 原理图(3) 线程请求栈的深度大于虚拟机所允许的深度,

《深入理解Java虚拟机》学习笔记

自动内存管理机制 第2章 垃圾收集器与内存分配策略 1.Java虚拟机在执行java程序时会把它所管理的内存会分为若干个不同的数据区域, 这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在, 有些区域则是在以来用户线程的启动和结束而建立和销毁. 根据<Java虚拟机规范>,包括以下几个运行时数据区域: //此处应有类图,但是画起来太麻烦! 程序计数器(Program Counter Register) 方法区(Method Area) 虚拟机栈(VM Stack)

理解Java虚拟机体系结构(转)

1 概述 众所周知,Java支持平台无关性.安全性和网络移动性.而Java平台由Java虚拟机和Java核心类所构成,它为纯Java程序提供了统一的编程接口,而不管下层操作系统是什么.正是得益于Java虚拟机,它号称的"一次编译,到处运行"才能有所保障. 1.1 Java程序执行流程 Java程序的执行依赖于编译环境和运行环境.源码代码转变成可执行的机器代码,由下面的流程完成: Java技术的核心就是Java虚拟机,因为所有的Java程序都在虚拟机上运行.Java程序的运行需要Java