《R数据可视化手册》一第1章 R基础1.1 安装包

第1章 R基础

R数据可视化手册
本章包括以下基础知识:安装包、使用包和加载数据。

如果你想快速上手,本书大多数技巧都需要安装ggplot2和gcookbook包。运行下面命令来安装:

install.packages(c("ggplot2", "gcookbook"))
然后,在每个R会话中,你需要在运行本书的例子之前先加载它们:

library(ggplot2)
library(gcookbook)
附录A提供了一个关于ggplot2绘图包的简介,主要是面向不熟悉ggplot2的读者。
R中的包是一些为了便于分发和传播而封装在一起的函数和(或)数据集(可以没有数据集)的集合。在你的电脑中安装软件包,便可以扩展R的功能。如果一个R用户编写了一个包并觉得这个包对其他R用户可能有用,那么,这位R用户就可以通过软件包仓库将该包发布。发布R软件包的最主要的软件包仓库是CRAN(Comprehensive R Archive Network),不过也有其他的仓库,如Bioconductor和Omegahat。

1.1 安装包

问题
如何从CRAN安装R包?

方法
使用install.packages()函数来安装包,括号中写上要安装的包名。以安装ggplot2包为例,运行:

install.packages("ggplot2")
此时系统可能提示你选择一个下载镜像,可以选择离你最近的一个;如果想要确保包的版本是最新的,那就选择Austria站点,因为这是CRAN的主服务器。

讨论
当R安装一个包的时候,该包依赖的所有包也都会被自动安装。

CRAN是R包的仓库,在全球范围内有很多镜像,它是R默认使用的库。此外,还有几个软件包仓库,如Bioconductor,它是与基因组数据分析相关的包的软件包仓库。

时间: 2024-11-08 18:16:54

《R数据可视化手册》一第1章 R基础1.1 安装包的相关文章

《R数据可视化手册》——第1章 R基础

第1章 R基础 R数据可视化手册本章包括以下基础知识:安装包.使用包和加载数据. 如果你想快速上手,本书大多数技巧都需要安装ggplot2和gcookbook包.运行下面命令来安装: install.packages(c("ggplot2", "gcookbook"))``` 然后,在每个R会话中,你需要在运行本书的例子之前先加载它们: library(ggplot2)library(gcookbook)`附录A提供了一个关于ggplot2绘图包的简介,主要是面向不

《R数据可视化手册》——第2章 快速探索数据

第2章 快速探索数据 R数据可视化手册虽然本书中大部分图形都是通过ggplot2包绘制的,但这并不是R绘制图形的唯一方法.要快速探索数据,有时使用R基础包中的绘图函数会很有用.这些函数随R软件默认安装,无需另行安装附加包.它们简短易输入,处理简单问题时使用方便,且运行速度极快. 如果你想绘制较为复杂的图形,那么,转用ggplot2包通常是更好的选择.部分原因在于ggplot2提供了一个统一的接口和若干选项来替代基础绘图系统中对图形的修修补补和各种特例.一旦掌握了ggplot2的工作机制,你就可以

《R数据可视化手册》——第3章 条形图

第3章 条形图 R数据可视化手册条形图也许是最常用的数据可视化方法,通常用来展示不同的分类下(在x轴上)某个数值型变量的取值(在y轴上).例如,条形图可以用来形象地展示四种不同商品的价格情况,但不适宜用来展示商品价格随时间的变动趋势,因为这里时间是一个连续变量--尽管我们也可以这么做,后面会看到这种情形. 绘制条形图时需特别注意一个重要的细节:有时条形图的条形高度表示的是数据集中变量的频数,有时则表示变量取值本身.牢记这个区别--这里极易混淆,因为两者与数据集的对应关系不同,但又对应同样的术语.

《R数据可视化手册》一第3章 条形图3.1 绘制简单条形图

第3章 条形图 R数据可视化手册 条形图也许是最常用的数据可视化方法,通常用来展示不同的分类下(在x轴上)某个数值型变量的取值(在y轴上).例如,条形图可以用来形象地展示四种不同商品的价格情况,但不适宜用来展示商品价格随时间的变动趋势,因为这里时间是一个连续变量--尽管我们也可以这么做,后面会看到这种情形. 绘制条形图时需特别注意一个重要的细节:有时条形图的条形高度表示的是数据集中变量的频数,有时则表示变量取值本身.牢记这个区别--这里极易混淆,因为两者与数据集的对应关系不同,但又对应同样的术语

《R数据可视化手册》一第2章 快速探索数据2.1 绘制散点图

第2章 快速探索数据 R数据可视化手册虽然本书中大部分图形都是通过ggplot2包绘制的,但这并不是R绘制图形的唯一方法.要快速探索数据,有时使用R基础包中的绘图函数会很有用.这些函数随R软件默认安装,无需另行安装附加包.它们简短易输入,处理简单问题时使用方便,且运行速度极快. 如果你想绘制较为复杂的图形,那么,转用ggplot2包通常是更好的选择.部分原因在于ggplot2提供了一个统一的接口和若干选项来替代基础绘图系统中对图形的修修补补和各种特例.一旦掌握了ggplot2的工作机制,你就可以

《R数据可视化手册》一导读

前 言 R数据可视化手册几年前读研时我开始用R,主要用来分析我在科研工作中收集到的数据.我使用R首先是想摆脱SPSS这样的统计软件的禁锢,即严格的环境和死板的分析.更何况,R是免费的,所以我用不着说服别人为我购买一套这样的软件--这对一个穷研究生来说是相当的重要!此后,随着我对R的了解不断深入,我才发现原来R还可以绘制出非常优秀.动人的数据图形. 本书的每个"技巧"中,都列出了一个问题和对应的解决方法.在大多数情况下,我提供的并不是R中唯一的实现方法,但却是我认为的最佳方案.R如此受欢

《R数据可视化手册》——导读

前言 R数据可视化手册几年前读研时我开始用R,主要用来分析我在科研工作中收集到的数据.我使用R首先是想摆脱SPSS这样的统计软件的禁锢,即严格的环境和死板的分析.更何况,R是免费的,所以我用不着说服别人为我购买一套这样的软件--这对一个穷研究生来说是相当的重要!此后,随着我对R的了解不断深入,我才发现原来R还可以绘制出非常优秀.动人的数据图形. 本书的每个"技巧"中,都列出了一个问题和对应的解决方法.在大多数情况下,我提供的并不是R中唯一的实现方法,但却是我认为的最佳方案.R如此受欢迎

《R数据可视化手册》——1.1 安装包

1.1 安装包 问题如何从CRAN安装R包? 方法使用install.packages()函数来安装包,括号中写上要安装的包名.以安装ggplot2包为例,运行: install.packages("ggplot2")``` 此时系统可能提示你选择一个下载镜像,可以选择离你最近的一个:如果想要确保包的版本是最新的,那就选择Austria站点,因为这是CRAN的主服务器. 讨论 当R安装一个包的时候,该包依赖的所有包也都会被自动安装.

《R数据可视化手册》一1.3 加载分隔符式的文本文件

1.3 加载分隔符式的文本文件 问题 如何加载一个分隔符式的文本文件中的数据? 方法 加载逗号分隔组(CSV)数据的最常用方法是: data <-read.csv("datafile.csv") 讨论 由于数据文件有许多不同的格式,为了加载它们,提供了很多对应的选项.如果一个数据集首行没有列名: data <-read.csv("datafile.csv", header=FALSE) 得到的数据框的列名将是V1.V2等,你可能想要重命名列: #手动为列