深入理解Android中Scroller的滚动原理_Android

View的平滑滚动效果

什么是实现View的平滑滚动效果呢,举个简单的例子,一个View从在我们指定的时间内从一个位置滚动到另外一个位置,我们利用Scroller类可以实现匀速滚动,可以先加速后减速,可以先减速后加速等等效果,而不是瞬间的移动的效果,所以Scroller可以帮我们实现很多滑动的效果。

首先我们先来看一下Scroller的用法,基本可概括为“三部曲”:

1、创建一个Scroller对象,一般在View的构造器中创建:

public ScrollViewGroup(Context context) {
  this(context, null);
}

public ScrollViewGroup(Context context, AttributeSet attrs) {
  this(context, attrs, 0);
}

public ScrollViewGroup(Context context, AttributeSet attrs, int defStyleAttr) {
  super(context, attrs, defStyleAttr);
  mScroller = new Scroller(context);
}

2、重写View的computeScroll()方法,下面的代码基本是不会变化的:

@Override
public void computeScroll() {
  super.computeScroll();
  if (mScroller.computeScrollOffset()) {
    scrollTo(mScroller.getCurrX(), mScroller.getCurrY());
    postInvalidate();
  }
}

3、调用startScroll()方法,startX和startY为开始滚动的坐标点,dx和dy为对应的偏移量:

mScroller.startScroll (int startX, int startY, int dx, int dy);
invalidate();

上面的三步就是Scroller的基本用法了。

那接下来的任务就是解析Scroller的滚动原理了。

而在这之前,我们还有一件事要办,那就是搞清楚scrollTo()scrollBy()的原理。scrollTo()scrollBy()的区别我这里就不重复叙述了,不懂的可以自行google或百度。

下面贴出scrollTo()的源码:

public void scrollTo(int x, int y) {
  if (mScrollX != x || mScrollY != y) {
    int oldX = mScrollX;
    int oldY = mScrollY;
    mScrollX = x;
    mScrollY = y;
    invalidateParentCaches();
    onScrollChanged(mScrollX, mScrollY, oldX, oldY);
    if (!awakenScrollBars()) {
      postInvalidateOnAnimation();
    }
  }
}

设置好mScrollXmScrollY之后,调用了onScrollChanged(mScrollX, mScrollY, oldX, oldY);  ,View就会被重新绘制。这样就达到了滑动的效果。

下面我们再来看看scrollBy()  :

public void scrollBy(int x, int y) {
  scrollTo(mScrollX + x, mScrollY + y);
}

这样简短的代码相信大家都懂了,原来scrollBy()内部是调用了scrollTo()的。但是scrollTo() / scrollBy()的滚动都是瞬间完成的,怎么样才能实现平滑滚动呢。

不知道大家有没有这样一种想法:如果我们把要滚动的偏移量分成若干份小的偏移量,当然这份量要大。然后用scrollTo() / scrollBy()每次都滚动小份的偏移量。在一定的时间内,不就成了平滑滚动了吗?没错,Scroller正是借助这一原理来实现平滑滚动的。

下面我们就来看看源码吧!

根据“三部曲”中第一部,先来看看Scroller的构造器:

public Scroller(Context context, Interpolator interpolator, boolean flywheel) {
  mFinished = true;
  if (interpolator == null) {
    mInterpolator = new ViscousFluidInterpolator();
  } else {
    mInterpolator = interpolator;
  }
  mPpi = context.getResources().getDisplayMetrics().density * 160.0f;
  mDeceleration = computeDeceleration(ViewConfiguration.getScrollFriction());
  mFlywheel = flywheel;

  mPhysicalCoeff = computeDeceleration(0.84f); // look and feel tuning
}

在构造器中做的主要就是指定了插补器,如果没有指定插补器,那么就用默认的ViscousFluidInterpolator

我们再来看看Scroller的startScroll()

public void startScroll(int startX, int startY, int dx, int dy, int duration) {
  mMode = SCROLL_MODE;
  mFinished = false;
  mDuration = duration;
  mStartTime = AnimationUtils.currentAnimationTimeMillis();
  mStartX = startX;
  mStartY = startY;
  mFinalX = startX + dx;
  mFinalY = startY + dy;
  mDeltaX = dx;
  mDeltaY = dy;
  mDurationReciprocal = 1.0f / (float) mDuration;
}

我们发现,在startScroll()里面并没有开始滚动,而是设置了一堆变量的初始值,那么到底是什么让View开始滚动的?我们应该把目标集中在startScroll()的下一句invalidate();身上。我们可以这样理解:首先在startScroll()设置好了一堆初始值,之后调用了invalidate();让View重新绘制,这里又有一个很重要的点,在draw()中会调用computeScroll()这个方法!

源码太长了,在这里就不贴出来了。想看的童鞋在View类里面搜boolean draw(Canvas canvas, ViewGroup parent, long drawingTime)这个方法就能看到了。通过ViewGroup.drawChild()方法就会调用子View的draw()方法。而在View类里面的computeScroll()是一个空的方法,需要我们去实现:

/**
 * Called by a parent to request that a child update its values for mScrollX
 * and mScrollY if necessary. This will typically be done if the child is
 * animating a scroll using a {@link android.widget.Scroller Scroller}
 * object.
 */
public void computeScroll() {
}

而在上面“三部曲”的第二部中,我们就已经实现了computeScroll()  。首先判断了computeScrollOffset() ,我们来看看相关源码:

/**
 * Call this when you want to know the new location. If it returns true,
 * the animation is not yet finished.
 */
public boolean computeScrollOffset() {
  if (mFinished) {
    return false;
  }

  int timePassed = (int)(AnimationUtils.currentAnimationTimeMillis() - mStartTime);

  if (timePassed < mDuration) {
    switch (mMode) {
    case SCROLL_MODE:
      final float x = mInterpolator.getInterpolation(timePassed * mDurationReciprocal);
      mCurrX = mStartX + Math.round(x * mDeltaX);
      mCurrY = mStartY + Math.round(x * mDeltaY);
      break;
    case FLING_MODE:
      final float t = (float) timePassed / mDuration;
      final int index = (int) (NB_SAMPLES * t);
      float distanceCoef = 1.f;
      float velocityCoef = 0.f;
      if (index < NB_SAMPLES) {
        final float t_inf = (float) index / NB_SAMPLES;
        final float t_sup = (float) (index + 1) / NB_SAMPLES;
        final float d_inf = SPLINE_POSITION[index];
        final float d_sup = SPLINE_POSITION[index + 1];
        velocityCoef = (d_sup - d_inf) / (t_sup - t_inf);
        distanceCoef = d_inf + (t - t_inf) * velocityCoef;
      }

      mCurrVelocity = velocityCoef * mDistance / mDuration * 1000.0f;

      mCurrX = mStartX + Math.round(distanceCoef * (mFinalX - mStartX));
      // Pin to mMinX <= mCurrX <= mMaxX
      mCurrX = Math.min(mCurrX, mMaxX);
      mCurrX = Math.max(mCurrX, mMinX);

      mCurrY = mStartY + Math.round(distanceCoef * (mFinalY - mStartY));
      // Pin to mMinY <= mCurrY <= mMaxY
      mCurrY = Math.min(mCurrY, mMaxY);
      mCurrY = Math.max(mCurrY, mMinY);

      if (mCurrX == mFinalX && mCurrY == mFinalY) {
        mFinished = true;
      }

      break;
    }
  }
  else {
    mCurrX = mFinalX;
    mCurrY = mFinalY;
    mFinished = true;
  }
  return true;
}

这个方法的返回值有讲究,若返回true则说明Scroller的滑动没有结束;若返回false说明Scroller的滑动结束了。再来看看内部的代码:先是计算出了已经滑动的时间,若已经滑动的时间小于总滑动的时间,则说明滑动没有结束;不然就说明滑动结束了,设置标记mFinished = true;  。而在滑动未结束里面又分为了两个mode,不过这两个mode都干了差不多的事,大致就是根据刚才的时间timePassed和插补器来计算出该时间点滚动的距离mCurrXmCurrY。也就是上面“三部曲”中第二部的mScroller.getCurrX()  , mScroller.getCurrY()的值。

然后在第二部曲中调用scrollTo()方法滚动到指定点(即上面的mCurrX, mCurrY)。之后又调用了postInvalidate(); ,让View重绘并重新调用computeScroll()以此循环下去,一直到View滚动到指定位置为止,至此Scroller滚动结束。

其实Scroller的原理还是比较通俗易懂的。我们再来理清一下思路,以一张图的形式来终结今天的Scroller解析:

总结

好了,本文介绍Android中Scroller的滚动原理的内容到这就结束了,如果有什么问题可以在下面留言。希望本文的内容对大家开发Android能有所帮助。

以上是小编为您精心准备的的内容,在的博客、问答、公众号、人物、课程等栏目也有的相关内容,欢迎继续使用右上角搜索按钮进行搜索android
, scroller详解
, Scroller
scroller滑动
深入理解mybatis原理、深入理解php原理 鸟哥、深入理解php原理、深入理解计算机原理、深入理解爬虫原理,以便于您获取更多的相关知识。

时间: 2024-09-23 05:38:41

深入理解Android中Scroller的滚动原理_Android的相关文章

深入理解Android中Scroller的滚动原理

View的平滑滚动效果 什么是实现View的平滑滚动效果呢,举个简单的例子,一个View从在我们指定的时间内从一个位置滚动到另外一个位置,我们利用Scroller类可以实现匀速滚动,可以先加速后减速,可以先减速后加速等等效果,而不是瞬间的移动的效果,所以Scroller可以帮我们实现很多滑动的效果. 首先我们先来看一下Scroller的用法,基本可概括为"三部曲": 1.创建一个Scroller对象,一般在View的构造器中创建: public ScrollViewGroup(Cont

详解Android中Handler的实现原理_Android

在 Android 中,只有主线程才能操作 UI,但是主线程不能进行耗时操作,否则会阻塞线程,产生 ANR 异常,所以常常把耗时操作放到其它子线程进行.如果在子线程中需要更新 UI,一般是通过 Handler 发送消息,主线程接受消息并且进行相应的逻辑处理.除了直接使用 Handler,还可以通过 View 的 post 方法以及 Activity 的 runOnUiThread 方法来更新 UI,它们内部也是利用了 Handler .在上一篇文章 Android AsyncTask源码分析 中

理解Android中Activity的方法回调_Android

为什么需要方法回调? 方法回调是功能定义和功能分离的一种手段,是一种松耦合的设计思想.在JAVA中回调是通过接口来实现的.作为一种系统架构,必须要有自己的运行环境,并且要提供用户的实现接口. 下面通过实例来模拟一下Android中Activity的方法回调思想.Activity接口 复制代码 代码如下: package com.xujing.test  //定义接口  public interface Activity{      //创建时调用的方法      public void onCr

深入理解Android中的Handler异步通信机制_Android

一.问题:在Android启动后会在新进程里创建一个主线程,也叫UI线程(非线程安全)这个线程主要负责监听屏幕点击事件与界面绘制.当Application需要进行耗时操作如网络请求等,如直接在主线程进行容易发生ANR错误.所以会创建子线程来执行耗时任务,当子线程执行完毕需要通知UI线程并修改界面时,不可以直接在子线程修改UI,怎么办? 解决方法:Message Queue机制可以实现子线程与UI线程的通信. 该机制包括Handler.Message Queue.Looper.Handler可以把

深入理解Android中的xmlns:tools属性_Android

前言 安卓开发中,在写布局代码的时候,ide可以看到布局的预览效果. 但是有些效果则必须在运行之后才能看见,比如这种情况:TextView在xml中没有设置任何字符,而是在activity中设置了text.因此为了在ide中预览效果,你必须在xml中为TextView控件设置android:text属性 <TextView android:id="@+id/text_main" android:layout_width="match_parent" andro

源码-Android中事件传递机制原理

问题描述 Android中事件传递机制原理 我们知道,所有的控件直接或间接的继承子View,View的子类有ViewGroup,并且ViewGroup的子类也会有其他的子View,那么他们之间事件的传递机制是怎样的?对源码有研究的吗? 解决方案 android事件传递机制Android 事件的传递机制Android之事件传递机制 解决方案二: http://blog.csdn.net/pi9nc/article/details/9281829http://www.csdn123.com/html

如何理解android中的api level

问题描述 如何理解android中的api level 刚开始是api level 1 现在api level 多少了 是不是随着android版本的更新而不断的更新 解决方案 可以查看android api的官网,http://source.android.com/source/build-numbers.html level是会随版本更新的,现在都二十几了,应该是23了吧 解决方案二: http://blog.csdn.net/nihaoqiulinhe/article/details/50

深入理解Android中的建造者模式_Android

前言 在Android开发过程中,我发现很多安卓源代码里应用了设计模式,比较常用的有适配器模式(各种adapter),建造者模式(Alert Dialog的构建)等等.虽然我们对大多数设计模式都有所了解,但是在应用设计模式的这个方面,感觉很多人在这方面有所不足.所以这篇文章我们一起深入的理解Android中的建造者模式. 建造者模式(Builder Pattern)也叫生成器模式,其定义如下: separate the construction of a complex object from

深入理解Android中View和ViewGroup

深入理解Android中View 这回我们是深入到View内部,去研究View,去了解View的工作,抛弃其他因素,以便为以后能灵活的使用自定义空间打下一定的基础.希望有志同道合的朋友一起来探讨,深入Android内部,深入理解Android. 一.View是什么? View是什么了,每个人都有自己的理解.在Android的官方文档中是这样描述的:这个类表示了用户界面的基本构建模块.一个View占用了屏幕上的一个矩形区域并且负责界面绘制和事件处理.View是用来构建用户界面组件(Button,T