以下为本人学习笔记,如有转载请注明出处,谢谢
1. service用法 oneshot
DEFINE_MUTEX(buzzer_mutex);
mutex_lock(&buzzer_mutex);
mutex_unlock(&buzzer_mutex);
static void WriteNumber(const char *fileName, int number)
{
FILE *fp;
fp = fopen(fileName, "w");
if (fp == NULL) {
LCD_DEBUG("open %s error, errno %d\n", fileName, errno);
return;
}
fprintf(fp, "%d", number);
fclose(fp);
}
service aa /usr/bin/aa
class core
user root
group root
critical
onrestart restart aa
onrestart restart tt
#service bbd /usr/bin/bb
service bb /usr/bin/app_bbl_read
user root
group root
oneshot
2.【Shell脚本】怎样表示一个for循环
作者:gnuhpc
出处:http://www.cnblogs.com/gnuhpc/
在此说一下我常用的两个结构:
1.
for i in $(seq 1 100); do
echo $i
done
2.
for (( i = 1 ; $i <= 100; i++ )) ;do
echo $i;
done
作者:gnuhpc
出处:http://www.cnblogs.com/gnuhpc/
3.对于关闭抢占的内核接口
看内核接口是同步还是异步,比方说msleep就是异步接口,会休眠让出cpu
mdelay是忙等待,不会让出cpu
如果是同步接口的话,对于单核cpu,就不会出现多进程同时调用同一个接口出错的情况
如果是异步接口的话,就得具体问题具体分析,如果是仅仅避免多个进程调度同一个接口的情况的话,加信号量或者普通的锁就可以,不一定要加互斥锁,
如果是又有中间层调度接口,又有用户态上层调度接口,那么就另当别论了
spin_lock这种锁是用来多核cpu共同调用同个接口的问题,
mutex_lock这种是会休眠,同个cpu的互斥锁,如果是进程上下文就可以用,如果是中断上下文就不能用这种锁,因为这种锁会休眠,中断中是不允许休眠的
local_irq_save(flags);
local_irq_restore(flags);
spin_lock_irqsave(&iproc_bbl->lock, flags);
spin_unlock_irqrestore(&iproc_bbl->lock, flags);
4.网上大家经常碰到的不能连接问题:
请在运行-cmd输入netstat -n 查看5222端口是否在建立状态 ESTABLISHED,这个方法来源自网络,部落没有遇到过.另外,还有一个,就是清空本地本地DNS缓存,具体步骤如下:
在windows下运行运行菜单,开始->运行,输入"CMD"进行命令行窗口,然后输入 ipconfig/flushdns 按回车键
5.休眠唤醒调试
kernel/power/main.c中可以通过打印链表的信息,在休眠唤醒的时候将每个唤醒的源消耗的时间打印出来
dpm_run_callback() ----》drivers/base/power
6.中断中不可以加入打印
中断处理函数应该避免调用不可重入函数, 因为新的中断可能发生并打断正在执行任务中,如果当前任务调用了一些不可重入的函数,将会产生错误。
一些常用库函数如printf,malloc,free等都是不可重入函数,因为在函数中引用了全局变量, 这个道理因该很容易明白了吧?
例如, printf会引用全局变量stdout,malloc,free会引用全局的内存分配表。
arch/arm/kernel/debug.S:157: Error: too many positional arguments
7.sys文件节点要注意返回值
static inline ssize_t show_counter_sysfs(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asiu_pwm_chip *asiu_pwm = dev_get_drvdata(dev);
int i, n;
long value;
n=0;
if(asiu_pwm) {
for (i=0; i<6; i++) {
value = __onepulse_pwm_counter_extend(i);
n += sprintf(buf + n, "pwm_id(%d)----0x%x \n", i, value);
}
return n;
}
else
return -1;
}
static struct device_attribute sysfs_misc_list[] = {
__ATTR(onepluse_counter,S_IRUGO , show_counter_sysfs, NULL),
};
/* tp info show include tp sw version, fw version, cfg csum, hw version */
static ssize_t tp_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct synaptics_rmi4_data *rmi4_data = exp_data.rmi4_data;
int len = 0;
int retval;
unsigned char config_id[4];
if (NULL == rmi4_data || !f34_ctrl_base_addr)
return -1;
/* Get device config ID */
retval = synaptics_rmi4_reg_read(rmi4_data,
f34_ctrl_base_addr,
config_id, sizeof(config_id));
if (retval < 0) {
dev_err(rmi4_data->pdev,
"%s: Failed to read device config ID\n", __func__);
return -1;
}
len =
scnprintf(buf + len, PAGE_SIZE, "SW:%s\n",
SYNAPTICS_DSX_DRV_VERSION);
/* combine FW and CFG CSUM */
#define SPLIT_TAG "_CFGID"
len +=
scnprintf(buf + len, PAGE_SIZE, "FW:%u%s%02x%02x%02x%02x\n", rmi4_data->firmware_id,
SPLIT_TAG,
config_id[0],
config_id[1],
config_id[2],
config_id[3]);
/*
len +=
scnprintf(buf + len, PAGE_SIZE,
"CFG ID:0x%02x 0x%02x 0x%02x 0x%02x\n", config_id[0],
config_id[1], config_id[2], config_id[3]);
*/
/* add for chipset name */
len += scnprintf(buf + len, PAGE_SIZE, "CHIP NAME:%s\n", "synaptics");
return len;
}
sys 文件节点写函数的时候,sh: write error: Bad address,这种错误一般是return没有返回正确的值,
什么值是正确的呢?那就是count,长度这些才可以,那么系统是怎么识别的呢?要取决于文件系统和echo的实现
static ssize_t test_sysfs_get_report_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned char command;
unsigned long setting;
struct synaptics_rmi4_data *rmi4_data = f54->rmi4_data;
retval = sstrtoul(buf, 10, &setting);
if (retval)
return retval;
printk("zbh 111 \r\n");
if (setting != 1) {
printk("zbh %s(): ---> %d\r\n", __func__, __LINE__);
return -EINVAL;
}
mutex_lock(&f54->status_mutex);
retval = test_check_for_idle_status();
if (retval < 0) {
printk("zbh %s(): ---> %d\r\n", __func__, __LINE__);
goto exit;
}
if (!test_report_type_valid(f54->report_type)) {
dev_err(rmi4_data->pdev,
"%s: Invalid report type\n",
__func__);
retval = -EINVAL;
printk("zbh %s(): ---> %d\r\n", __func__, __LINE__);
goto exit;
}
test_set_interrupt(true);
command = (unsigned char)COMMAND_GET_REPORT;
retval = synaptics_rmi4_reg_write(rmi4_data,
f54->command_base_addr,
&command,
sizeof(command));
if (retval < 0) {
dev_err(rmi4_data->pdev,
"%s: Failed to write get report command\n",
__func__);
goto exit;
}
/* tddi f54 test reporting + */
#ifdef F54_POLLING_GET_REPORT
retval = test_sysfs_get_report_polling();
if (retval < 0) {
dev_err(rmi4_data->pdev,
"%s: Failed to get report image\n",
__func__);
printk("zbh 222 \r\n");
goto exit;
}
#else
/* tddi f54 test reporting - */
f54->status = STATUS_BUSY;
f54->report_size = 0;
f54->data_pos = 0;
hrtimer_start(&f54->watchdog,
ktime_set(GET_REPORT_TIMEOUT_S, 0),
HRTIMER_MODE_REL);
retval = count;
#endif
retval = count; // ===》如果去掉这一行的话,那么echo 1 > get_report 的话就会出现错误 sh: write error: Bad address
exit:
mutex_unlock(&f54->status_mutex);
printk("zbh %s(): retval=%d---> %d\r\n", __func__, retval, __LINE__);
return retval;
}
因为bbl会影响打印机,1s=1000000us
Bbl的时钟是32.768kHz,
所以1000000/32768=30us左右
也就是这个时钟的精度是30us,而bbl寄存器读status状态是延时10us,太短了,至少要在一个clock完成后再读,所以改成延时35us,
8.shell脚本循环
#!/bin/sh
while true
do
let "i++"
echo "is $i"
done
9.查看这些宏CONFIG_SMP在linux内核中是否有定义
#ifndef CONFIG_SMP
要去linux3.6.5目录下.config文件
10.书写代码框架注意:
goto 和return
static int asiu_pwmc_config(struct pwm_chip *chip, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
struct asiu_pwm_chip *asiu_pwm = to_asiu_pwm_chip(chip);
struct asiu_pwm_cfg *pwm_cfg;
unsigned long period_counts, dutyhi_counts;
unsigned long prescale = 0;
unsigned long long ticks;
if (pwm_cfg->enabled) {
/* Change the PWM output with the new config */
asiu_pwmc_disable(chip, pwm);
//asiu_pwmc_enable(chip, pwm);
}
#ifdef PWMC_DEBUG
dev_info(chip->dev, "%s : [pwm-%d] duty_ns = %d, period_ns = %d\n",
__FUNCTION__, pwm->hwpwm, duty_ns, period_ns);
#endif
if (duty_ns == 0 && period_ns ==0) {
/* PWM stay low, duty cycle = 0% */
prescale = 0;
period_counts = 0;
dutyhi_counts = 0;
}
else if (duty_ns >= period_ns) {
/* PWM stay high, duty cycle = 100% */
prescale = 0;
period_counts = ASIU_PWM_PERIOD_MASK;
dutyhi_counts = ASIU_PWM_DUTYHI_MASK;
}
else {
ticks = (unsigned long long)period_ns * asiu_pwm->tick_hz;
do_div(ticks, NSEC_PER_SEC);
period_counts = ticks;
prescale = period_counts >> ASIU_PWM_PEROID_WIDTH;
if(prescale & ~ASIU_PWM_PRESCALE_MASK) {
dev_warn(chip->dev, "%s(%d) : period_counts = %d, prescale = 0x%x\n",
__FUNCTION__, __LINE__, period_counts, prescale);
return -EINVAL;
}
ticks = (unsigned long long)duty_ns * asiu_pwm->tick_hz;
do_div(ticks, NSEC_PER_SEC);
dutyhi_counts = ticks;
}
pwm_cfg = pwm_get_chip_data(pwm);
if (!pwm_cfg) {
dev_warn(chip->dev, "fail to get pwm config data\n");
return -ENOMEM;
}
pwm_cfg->prescale = prescale;
pwm_cfg->period_cnt = period_counts;
pwm_cfg->dutyhi_cnt = dutyhi_counts;
if (pwm_cfg->enabled) {
/* Change the PWM output with the new config */
//asiu_pwmc_disable(chip, pwm);
asiu_pwmc_enable(chip, pwm);
}
#ifdef PWMC_DEBUG
dev_info(chip->dev, "%s : pwm_cfg->prescale = %d, period_cnt = %d, dutyhi_cnt = %d\n",
__FUNCTION__, pwm_cfg->prescale, pwm_cfg->period_cnt, pwm_cfg->dutyhi_cnt);
#endif
return 0;
}
对于如上框架:
进入config函数时先pwm_disable, 然后中间计算,最后enable
但是中间有很多return,我们做接口的目的有个宗旨:
函数是为了改变原来的状态的,如果此函数运行失败返回,那么就要还原原来的场景,不要改变原来的场景。
如上例子如果用中间用return,一开始执行了disable,那么中间如果执行失败return了,后面就不会执行enable,那么pwm状态就会变了,那么对于这种情况我们要使用goto到后面,然后再进行enable,就算失败了,也要还原之前的场景去enable,所以需要把上一次的值保存起来。
11.vim快捷键
vi -d a.c b.c,可以对比
对比过程中,如果拷贝的话,可以用快捷键dp
12.对触摸屏中断的理解
触摸屏与cpu是由一个gpio中断口线相连,所有的中断都是由tp那端抛给cpu的,
Tp通过设定各种参数,刷新频率,扫描频率,电容值(即基准点),tp通过计算触摸屏上的点来决定是否发送中断给cpu,如果计算到没点,就不发送中断给cpu,如果计算到有点,那么就会发送中断给cpu,(注意:tp只要上电启动了那么就会一直进行运算),每次触摸屏上只要有按下,不管几个手指都会产生一个中断,抬起又产生一个中断,最小单位产生两个中断,如果是电平中断,一直按着手指,会不停的产生中断,产生中断的时间和次数由tp的运算速度决定,很难去量化,按下的手指越多,tp运算时间越长,至于有时候发现log有10个finger,和10个status状态,那是驱动代码在一个中断产生时遍历了report动作10次,这些finger和status是通过tp寄存器读取到再由驱动上报内核空间,最终通过input子系统发送给用户空间
===========================================================================================
13.怎么样让编译器对某些函数不再抱怨warning: unused parameter ‘xxx’?
转自:https://segmentfault.com/q/1010000002395334
#define UNUSED_PARAMETER(x) (void)x
int main(int argc, char **argv)
{
// 这两行是为了避免编译报警告
UNUSED_PARAMETER(argc);
UNUSED_PARAMETER(argv);
}
如果可能,请务必用正常方法消除 warning,真的多余就去掉吧
方法一:
void foo(int a) {
(void)a;
// ...
}
方法二:
#ifdef __GNUC__
# define UNUSED(x) UNUSED_ ## x __attribute__((__unused__))
#else
# define UNUSED(x) UNUSED_ ## x
#endif
void foo(int UNUSED(a)) {
// ...
}
参考:http://stackoverflow.com/a/12891181
===========================================================================================
字符串比较时,strncmp strcmp 需要注意的地方,要注意比较长度
if ((strlen(ts_keyword) != strlen(fw_ugd->ts_keyid)) ||
strcasecmp(ts_keyword, fw_ugd->ts_keyid)) {
printf("%s: check ts_keyword[%s],fw_ugd->ts_keyid[%s]\n",
__FUNCTION__, ts_keyword, fw_ugd->ts_keyid);
retval = TP_FW_ERR_TS_KEYID_COMPARE;
goto error;
}
中断 IRQF_ONESHOT 与 IRQF_SHARED 不能同时使用 当多个设备共享中断时,由于IRQF_ONESHOT会关闭中断线程的中断,而线程一般执行时间会比较长,所以是不允许的 当hardirq函数为NULL时,必须声明IRQF_ONESHOT, 表示threadirq线程中关闭该中断,在某些情况下,这个标志会非常有用 例如:设备是低电平产生中断,而硬中断函数为NULL,如果不使用IRQF_ONESHOT,就会一直产生中断执行NULL函数,中断线程 得不到执行,声明IRQF_ONESHOT后,会执行完线程才使能该中断
14.devm_request_irq---- 这种架构会自己释放资源,不需要自己释放,交由devr内核链表管理
http://lxr.free-electrons.com/ident?i=devm_request_irq
15.这个网址可以查询内核源码
16.rm命令
删除除了 tt.c的所有文件,只保留tt.c不被删除
rm -rf !(tt.c)
17.查看当前项目有哪些远程仓库
$ git remote
bixiaopeng@bixiaopengtekiMacBook-Pro wirelessqa$ git remote origin
查看远程仓库
$ git remote -v
bixiaopeng@bixiaopengtekiMacBook-Pro wirelessqa$ git remote -v
origin git@gitlab.***.com:xiaopeng.bxp/wirelessqa.git (fetch)
origin git@gitlab.***.com:xiaopeng.bxp/wirelessqa.git (push)
0x1000 16*16*16=4096bit = 4KB
18.堆栈的限制
堆栈空间的最大值是由setrlimit系统调用确定的,也可以通过bash内建的ulimit命令来设定和查看.
例如:
查看当前可使用的最大堆栈(以KB为单位)
ulimit -s
8192 //栈的大小默认是8M
设定为最大的使用堆栈为15KB
ulimit -s 15
此时执行ls将会得到一个段错误.
ls -l /etc/
total 1040
Segmentation fault
通过用strace跟踪ls命令,将发现有如下的系统调用
getrlimit(RLIMIT_STACK, {rlim_cur=15*1024, rlim_max=15*1024}) = 0
说明当前可用的堆栈空间,已经不足以运行strace命令了.
19.Linux驱动调试中的Debugfs的使用简介
http://blog.csdn.net/wealoong/article/details/7992071
Linux DebugFS 子目录也是用debugfs_create_dir来实现
http://blog.csdn.net/superkris/article/details/8626517
mount来调试文件节点, sysfs节点调试方法
make menuconfig ----
Global build settings ------
Compile the kernel with Debug FileSystem enabled
Make kernel_menuconfig --------------
Kernel hacking --------
Debug Filesystem
mount -t debugfs none /sys/kernel/debug
20.grep 命令
grep -run "\< abc \>"
21.检测内存泄露的方法
Make kernel_menuconfig
Kernel hacking =======>
[*] Kernel memory leak detector
(40000) Maximum kmemleak early log entries
[*] Compile the kernel with debug info
make menuconfig
[*] Compile the kernel with Debug FileSystem enabled
[*] Compile the kernel with debug information
开机后
mount -t debugfs none /sys/kernel/debug
cd /sys/kernel/debug
cat kmemleak
make kernel_menuconfig
这个选项是说明
General setup ================>
Choose SLAB allocator (SLUB (Unqueued Allocator))
(X) SLUB (Unqueued Allocator)
[*] Enable SLUB debugging support
22.这里使用slub分配内存比slab更高效
我们在调试内核时,如果出现系统响应非常慢的情况
先看有没有死锁,用lockdep来检测
检测出来后再用ftrace来跟踪函数
如果出现kernel内存泄露,可以 用kmemleak来查看,查看前要确认内核使用哪个分配器,一般是slab或者slub
cat /proc/meminfo 查看内存泄露
23.Linux设备驱动之semaphore机制
static noinline void __down(struct semaphore *sem);
static noinline int __down_interruptible(struct semaphore *sem);
static noinline int __down_killable(struct semaphore *sem);
static noinline int __down_timeout(struct semaphore *sem, long jiffies);
static noinline void __up(struct semaphore *sem);
#define DEFINE_SEMAPHORE(name) \
struct semaphore name = __SEMAPHORE_INITIALIZER(name, 1)
static inline void sema_init(struct semaphore *sem, int val)
{
static struct lock_class_key __key;
*sem = (struct semaphore) __SEMAPHORE_INITIALIZER(*sem, val);
lockdep_init_map(&sem->lock.dep_map, "semaphore->lock", &__key, 0);
}
一个核,执行了两个死循环进程,那么这两个进程是通过内核的调度算法去选择要执行哪个进程的,最终会执行arm的指令,这两个进程在单和上是永远不可能同时执行的,MMU里面会有进程id寄存器
24.获得内核函数地址的四种方法
本文以获取内核函数 sys_open()的地址为例。
1)从System.map文件中直接得到地址:
$ grep sys_open /usr/src/linux/System.map
2)使用 nm 命令:
$ nm vmlinuz | grep sys_open
3)从 /proc/kallsyms 文件获得地址:
$ cat /proc/kallsyms | grep sys_open
4)使用 kallsyms_lookup_name() 函数:
是在kernel/kallsyms.c文件中定义的,要使用它必须启用CONFIG_KALLSYMS编译内核。
kallsyms_lookup_name()接受一个字符串格式内核函数名,返回那个内核函数的地址。
kallsyms_lookup_name("sys_open");
方法一、
通过打印函数地址,可以查看函数在哪里调用
例如:
Core.c drivers\pwm
int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns)
{
if (!pwm || period_ns == 0 || duty_ns > period_ns)
return -EINVAL;
printk("%s drivers\pwm Core.c----(%d)\r\n", __func__, __LINE__);
printk("pwm->chip->ops->config=%p----(%d)\r\n", pwm->chip->ops->config, __LINE__);
return pwm->chip->ops->config(pwm->chip, pwm, duty_ns, period_ns);
}
终端显示如下:
[ 42.550000] pwm->chip->ops->config=c001b0c0----(378)
然后可以在
如下目录
Z:\linux-3.6.5
中的System.map中找到
c001b0c0 t asiu_pwmc_config
就调用的是这个函数asiu_pwmc_config
方法二、
dump_stack()函数
25.打印语句的使用,带颜色的打印
#define RESETCOLOR "\033[0m"
#define GREEN "\033[0;32m"
#define RED "\033[0;31m"
#define LIGHT_RED "\033[1;31m"
#define YELLOW "\033[1;33m"
#define BLUE "\033[0;34m"
#define LIGHT_BLUE "\033[1;34m"
#define CYAN "\033[0;36m"
#define PURPLE "\033[0;35m"
#define LIGHT_PURPLE "\033[1;35m"
#define BROWN "\033[0;33m"
#define WHITE "\033[1;37m"
#define LIGHT_GRAY "\033[0;37m"
#define DARY_GRAY "\033[1;30m"
printf(YELLOW"** 10. set asiu_pwm while **"RESETCOLOR"\r\n");
printf(YELLOW"**"LIGHT_RED" 4. onepluse pwm disable "YELLOW"**"RESETCOLOR"\r\n");
RC文件延时方法:
wait /dev/zhangb 随便一个不存在的节点都可以,固定为延时5s
如何增加打印信息---灵活使用宏定义:
#include <stdio.h>
#include <stdlib.h>
#define qWiFiDebug(format, ...) printf("[WiFi] "format" File:%s, Line:%d, Function:%s \r\n", ##__VA_ARGS__, __FILE__, __LINE__ , __FUNCTION__);
int main(void)
-{
| qWiFiDebug("aaaaaa -----");
|
| return 0;
|}
打印输出:
./a.out
[WiFi] aaaaaa ----- File:a.c, Line:9, Function:main
#define RESETCOLOR "\033[0m" #define GREEN "\033[0;32m" #define RED "\033[0;31m" #define LIGHT_RED "\033[1;31m" #define YELLOW "\033[1;33m" #define BLUE "\033[0;34m" #define LIGHT_BLUE "\033[1;34m" #define CYAN "\033[0;36m" #define PURPLE "\033[0;35m" #define LIGHT_PURPLE "\033[1;35m" #define BROWN "\033[0;33m" #define WHITE "\033[1;37m" #define LIGHT_GRAY "\033[0;37m" #define DARY_GRAY "\033[1;30m" #define ZBH_TRACE_DEBUG (1 << 0) #define ZBH_TRACE_INIT (1 << 1) #define ZBH_TRACE_INT (1 << 2) #define ZBH_TRACE_X_Y_COORDINATE (1 << 3) #define ZBH_TRACE_FINGER_UP (1 << 4) #ifdef __BASE_FILE_NAME__ #define printk_get_basename(x) __BASE_FILE_NAME__ #else static char *printk_get_basename(char *path) { char *p1 = path, *p2 = p1; while (*p1 != '\0') { if (*p1 == '/') p2 = p1 + 1; p1++; } return (p2); } #endif //printk(KERN_INFO "[%s]"format"File:%s, Line:%d, Function:%s \r\n", \ // ##__VA_ARGS__, printk_get_basename(__FILE__), __LINE__, __FUNCTION__); \ //printk(KERN_INFO "[%s%4d@%18s] "format, GT1X_PREFIX, __LINE__, printk_get_basename(__FILE__), ##arg); \ //printk(KERN_INFO "[%s]"format"[File:%s, Line:%d, Function:%s] \r\n", ZBH_PREFIX, ##arg, printk_get_basename(__FILE__), __LINE__, __FUNCTION__); \ #define ZBH_PREFIX "ZBH: " #define zbh_trace(flag, format, arg...) \ do { \ if (zbh_trace_param & flag) \ printk(KERN_INFO "[%s%4d@ %s] %s(): "format, ZBH_PREFIX, __LINE__, \ printk_get_basename(__FILE__), __FUNCTION__, ##arg); \ } while (0) #define zbh_printk(format, arg...) \ printk(KERN_INFO "%s"format, ZBH_PREFIX, ##arg)
26.linux用户栈和内核栈的设置
http://stackoverflow.com/questions/2562602/how-does-fork-return-for-child-process
http://blog.csdn.net/u011279649/article/details/18795547
copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long unused, struct task_struct * p, struct pt_regs * regs)
How to set the new process entry
int
copy_thread(unsigned long clone_flags, unsigned long stack_start,
unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *thread = task_thread_info(p);
struct pt_regs *childregs = task_pt_regs(p);
*childregs = *regs;
childregs->ARM_r0 = 0;
childregs->ARM_sp = stack_start;
memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
thread->cpu_context.sp = (unsigned long)childregs;
thread->cpu_context.pc = (unsigned long)ret_from_fork;
27.makefile编写注意:
EXTRA_CFLAGS += -DDO_TEST_REPORTING
ifeq ($(CONFIG_ENABLE_PCI),y)
EXTRA_CPPFLAGS += -DCONFIG_ENABLE_PCI
endif
28.好的网址
http://web.mit.edu/gnu/www/index.html -------》麻省理工大学的校网,gnu , automake , autoconf
www.yoctoproject.org --------》飞思卡尔搞的非常强大的linux开发环境
29.文件系统操作,查看内核一些信息
cat /proc/meminfo
/data/app # cat /proc/meminfo
MemTotal: 60488 kB
MemFree: 19200 kB
Buffers: 0 kB
Cached: 27028 kB
SwapCached: 0 kB
Active: 11276 kB
Inactive: 22708 kB
Active(anon): 11256 kB
Inactive(anon): 13432 kB
Active(file): 20 kB
Inactive(file): 9276 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 6976 kB
Mapped: 2832 kB
Shmem: 17732 kB
Slab: 3448 kB
SReclaimable: 668 kB
SUnreclaim: 2780 kB
KernelStack: 496 kB
PageTables: 312 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 30244 kB
Committed_AS: 46220 kB
VmallocTotal: 319488 kB
VmallocUsed: 21720 kB
VmallocChunk: 294908 kB
/data/app # cat /proc/mtd
dev: size erasesize name
mtd0: 000c0000 00020000 "boot"
mtd1: 00080000 00020000 "nvram_fac"
mtd2: 000c0000 00020000 "boot_res"
mtd3: 00400000 00020000 "kernel"
mtd4: 00600000 00020000 "ramdisk"
mtd5: 00600000 00020000 "base"
mtd6: 06e00000 00020000 "data"
30.find 命令和grep命令
find . "*sdio*" -maxdepth 2
find . README -maxdepth 1 | xargs grep -nri "a"
find target/linux/brcm5830/files/arch/arm/mach-iproc/pm_iproc/ -name "*.c" -print | xargs grep "USB"
find ./package/kmod-prolin/bbl/ -maxdepth 1 -print | xargs grep -rni "PCI"
find ./ -name "synaptics_dsx_core.h" | xargs grep -rwi "reset_device"
find ./package/kmod-brcm5830x/input/keypad_matrix/src/keypad_matrix.c -print0 |xargs grep -run -B8 -A2 "buzzer_level"
find ./ -name "*.c" |xargs grep --colour -run printf
dev_dbg(rmi4_data->pdev,
"%s: rmi4_data->report_type = %d\n"
"rmi4_data->finger_limit = %d\n"
"fhandler->num_of_data_points = %d\n",
__func__, rmi4_data->report_type,
rmi4_data->finger_limit, fhandler->num_of_data_points);
这是个小技巧,grep的A(after,后)选项和B(before,前)选项可以同时输出其匹配行的前后几行。 比如包含有如下文本的message.txt: Aug 5 02:43:12 zion kernel: [ 0.000000] Zone PFN ranges: Aug 5 02:43:12 zion kernel: [ 0.000000] DMA 0 -> 4096 Aug 5 02:43:12 zion kernel: [ 0.000000] Normal 4096 -> 130730 Aug 5 02:43:12 zion kernel: [ 0.000000] HighMem 130730 -> 130730 Aug 5 02:43:12 zion kernel: [ 0.000000] early_node_map[1] active PFN ranges Aug 5 02:43:12 zion kernel: [ 0.000000] 0: 0 -> 130730 Aug 5 02:43:12 zion kernel: [ 0.000000] DMI 2.3 present. 用带-B1和-A2选项的grep匹配搜索"DMA"。 grep -B1 -A2 "DMA" message.txt 输出: Aug 5 02:43:12 zion kernel: [ 0.000000] Zone PFN ranges: Aug 5 02:43:12 zion kernel: [ 0.000000] DMA 0 -> 4096 Aug 5 02:43:12 zion kernel: [ 0.000000] Normal 4096 -> 130730 Aug 5 02:43:12 zion kernel: [ 0.000000] HighMem 130730 -> 130730 grep匹配一个结果,输出多行的功能,在搜索日志文件时很有用。
Linux下find一次查找多个指定文件或者排除某类文件,在 GREP 中匹配多个关键字的方法 (1)Linux下find一次查找多个指定文件: 查找a.html和b.html find . -name "a.html" -name "b.html" find . -regex '.*\.txt\|.*\.doc\|.*\.mp3' find . -regex '.*\.txt\|.*\.doc\|.*\.mp3' ./a.txt ./a.doc ./a.mp3 (2)排除某些文件类型: 排除目录下所有以html结尾的文件: find . -type f ! -name "*.html" find . -type f ! -name "*.html" ./ge.bak.02.09 ./ge.html.changed.by.jack ./a.txt ./a.doc ./a.mp3 (3)排除多种文件类型的示例: find . -type f ! -name "*.html" -type f ! -name "*.php" -type f ! -name "*.svn-base" -type f ! -name "*.js" -type f ! -name "*.gif" -type f ! -name "*.png" -type f ! -name "*.cpp" -type f ! -name "*.h" -type f ! -name "*.o" -type f ! -name "*.jpg" -type f ! -name "*.so" -type f ! -name "*.bak" -type f ! -name "*.log" (3)在 GREP 中匹配多个关键字的方法: grep查找多个数字的文件: -r 递归,-E:正则 -l:只显示文件名 root@116.255.139.240:~/a# grep -r -E '0341028|100081|10086|10001' * a.txt:100081 b.txt:10086 c/cc.txt:0341028 c/cc.txt:100081 c/cc.txt:10086 c/cc.txt:10001 c.txt:10001 d.txt:0341028 grep -r -E -l '0341028|100081|10086|10001' * a.txt b.txt c/cc.txt c.txt d.txt 多种类型文件示例: view plainprint? find . -name "*.html" -o -name "*.js"|xargs grep -r "BusiTree"
31.printk 调试方法
内核中打印回调函数的名称
#include <linux/module.h>#include <linux/kernel.h>#include <linux/init.h>#include <asm/current.h>#include <linux/utsname.h>#include <asm/cacheflush.h>#include <asm/processor.h>#include <asm/thread_notify.h>#include <asm/stacktrace.h>#include <asm/mach/time.h> // add by zbhint get_func_name(void *ip){ printk("[<%p>] %pS\n", (void *) ip, (void *) ip); printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", KERN_DEFAULT, raw_smp_processor_id(), current->pid, current->comm, print_tainted(), init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); return 0;} void *ip = NULL; ip = keydata->buzzer->enable; printk("[<%p>] %pS\n", (void *) ip, (void *) ip); printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", KERN_DEFAULT, raw_smp_processor_id(), current->pid, current->comm, print_tainted(), init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); keydata->buzzer->enable(keydata,freq,duty); 再在panic.c中 找到print_taintedEXPORT_SYMBOL(print_tainted);这样可以给其他驱动调用此函数
print_hex_dump ===>内核一个不错的打印方式
此网址是我记录的一个printk 打印函数地址的方法
http://www.cnblogs.com/sky-heaven/p/7161373.html
__builtin_return_address
http://www.cnblogs.com/sky-heaven/p/7161404.html
printk("\033[1;31m %p---%pS \033[0m\r\n", __builtin_return_address(0), __builtin_return_address(0));
#define BF3005_PREFIX "bf3005: " #define bf3005_trace(flag, format, arg...) \ do { \ if (bf3005_trace_param & flag) \ printk(KERN_ERR "[%s%4d@%18s] "format, BF3005_PREFIX, __LINE__, printk_get_basename(__FILE__), ##arg); \ } while (0) #define bf3005_printk(format, arg...) \ printk(KERN_ERR "%s"format, BF3005_PREFIX, ##arg) bf3005_trace(BF3005_TRACE_DESCR, "enter %s(initialized = %d)\n", __func__, bf3005->initialized);
方法1:
//#define MY_DEBUG
#ifdef MY_DEBUG
#define MY_DBG(x...) do{printk(x);}while(0)
#else
#define MY_DBG(x...)
#endif
方法2:
驱动可以如下写:
#define MY_LEVEL1 (1 << 0)
#define MY_LEVEL2 (1 << 1)
unsigned int my_trace_param=0;
module_param_named(trace, my_trace_param, uint, S_IRUGO|S_IWUSR);
#define MY_DBG(flag, msg...) \
do { \
if (my_trace_param & flag) \
printk(KERN_ERR "zbh-debug: " msg); \
} while (0)
MY_DBG(MY_LEVEL1, "Goodbye module exit1.\r\n");
MY_DBG(MY_LEVEL2, "Goodbye module exit2.\r\n");
MY_DBG(MY_LEVEL2, "Goodbye module exit3.\r\n");
测试:
insmod my_printk_driver.ko
echo 2 > /sys/module/my_printk_driver/parameters/trace
这样就可以选择到底打印哪一条语句,用来动态调试开关,默认关打印
code:
#include <linux/init.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/kernel.h> #include<linux/slab.h> //kmalloc #include<asm/io.h> //ioremap #include<linux/device.h> //class_create/device_create #include <asm/uaccess.h> #include <linux/pwm.h> #include <linux/cdev.h> #include <pax/gpio_cfg.h> #include <pax/bcm5830x_gpio_def.h> #include <mach/iproc_regs.h> #include <mach/memory.h> #include <mach/iomux.h> #include <linux/delay.h> #include <linux/gpio.h> #include <linux/timer.h> #include <linux/hrtimer.h> #include <linux/ktime.h> #define PWM_IOC_MAGIC 'n' #define PWM_CONFIG _IOW(PWM_IOC_MAGIC, 1, int) #define PWM_DISABLE _IOW(PWM_IOC_MAGIC, 2, int) #define ONE_PWM_CONFIG _IOW(PWM_IOC_MAGIC, 3, int) #define ONE_PWM_DISABLE _IOW(PWM_IOC_MAGIC, 4, int) #define ONE_PWM_WHILE_10000 _IOW(PWM_IOC_MAGIC, 5, int) #define SET_PWM_GPIO _IOW(PWM_IOC_MAGIC, 6, int) #define SET_PWM_POLATIRY _IOW(PWM_IOC_MAGIC, 7, int) #define READ_ONEPLUSE_COUNTER _IOW(PWM_IOC_MAGIC, 8, int) #define SET_PWM_FUNC _IOW(PWM_IOC_MAGIC, 9, int) #define SET_PWM_WHILE _IOW(PWM_IOC_MAGIC, 10, int) #define ONE_PWM_DOORBELL _IOW(PWM_IOC_MAGIC, 11, int) #define MY_LEVEL1 (1 << 0) #define MY_LEVEL2 (1 << 1) unsigned int my_trace_param = 0; module_param_named(trace, my_trace_param, uint, S_IRUGO|S_IWUSR); #define MY_DBG(flag, msg...) \ do { \ if (my_trace_param & flag) \ printk(KERN_ERR "zbh-bbl: " msg); \ } while (0) static int ttime = 0; static int pmode = 0; // pmode=0 ----> asiu_pwmc , pmode=1 ----> onepluse module_param(ttime, int, 0); module_param(pmode, int, 0); //module_param(period, int, 0); #define HELLO_MAJOR 230 int hello_major = HELLO_MAJOR; module_param(hello_major, int, 0); static struct cdev *hello_cdev = NULL; static struct class *dev_class = NULL; static struct device *dev_device = NULL; static int hello_open(struct inode *inode, struct file *filp); static int hello_release(struct inode *inode, struct file *filp); static int hello_open(struct inode *inode, struct file *filp) { printk("hello_open is OK\r\n"); return 0; } static int hello_release(struct inode *inode, struct file *filp) { printk("hello_release is OK\r\n"); printk("pwm disable and free\r\n"); return 0; } struct file_operations hello_ops = { .owner = THIS_MODULE, .open = hello_open, .release = hello_release, //.unlocked_ioctl = hello_ioctl, }; static int __init hello_init(void) { dev_t devno; int ret; devno = MKDEV(hello_major, 0); ret = register_chrdev_region(devno, 1, "zbh_hello"); if (!ret) { printk("register dev OK.\r\n"); } else { printk("register dev failed.\r\n"); } hello_cdev = cdev_alloc(); cdev_init(hello_cdev, &hello_ops); cdev_add(hello_cdev, devno, 1); hello_cdev->owner = THIS_MODULE; hello_cdev->ops = &hello_ops; dev_class = class_create(THIS_MODULE, "dev_class"); if (IS_ERR(dev_class)) { printk(KERN_ERR "class_create() failed for dev_class\n"); ret = -EINVAL; goto out_err_1; } dev_device = device_create(dev_class, NULL, devno, NULL, "zbh_hello"); if (IS_ERR(dev_device)) { printk(KERN_ERR "device_create failed.\r\n"); ret = -ENODEV; goto out_err_2; } printk("Hello module init OK.\r\n"); return 0; out_err_2: class_destroy(dev_class); out_err_1: unregister_chrdev_region(MKDEV(hello_major, 0), 1); cdev_del(hello_cdev); return ret; } static void __exit hello_exit(void) { cdev_del(hello_cdev); device_destroy(dev_class, MKDEV(hello_major, 0)); class_destroy(dev_class); unregister_chrdev_region(MKDEV(hello_major, 0), 1); MY_DBG(MY_LEVEL1, "Goodbye module exit1.\r\n"); MY_DBG(MY_LEVEL2, "Goodbye module exit2.\r\n"); MY_DBG(MY_LEVEL2, "Goodbye module exit3.\r\n"); } module_init(hello_init); module_exit(hello_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("zhangbinghua"); MODULE_DESCRIPTION("zhangbh debug driver");
View Code
32.container_of的用法
typedef struct
{
u32* row_gpios;
u8 row_size;
u32* col_gpios;
u8 col_size;
tKEYCODE* keytable;
u16 keytable_size;
u8 debounce_ms;
int bl_gpio;
int buzzer_gpio; /* if gpio dimming */
int buzzer_pwm_id; /* if pwm controllor */
int ped_enable;
struct delayed_work work;
char * amp_pwr;
HOT_KEY_TAB *hot_key_table;
int hot_key_table_size;
struct delayed_work hot_key_work;
}tKEYPAD_MATRIX_DATA;
#endif
INIT_DELAYED_WORK(&matrix_global_dat.key_data->hot_key_work, hot_key_scan);
static void hot_key_scan(struct work_struct *work)
{
int index;
int has_evnet=0;
tKEYPAD_REPORT_DATA report_key;
tKEYPAD_MATRIX_DATA *keypad = container_of(work,tKEYPAD_MATRIX_DATA, hot_key_work.work);
if(get_hot_key_scan_code(keypad))
}
INIT_WORK(&wnet_power_on_wq, gprs_mu709_power_on);
schedule_work(&wnet_power_on_wq);
flush_work(&wnet_power_on_wq); // flush_work可以阻塞,是同步机制,如果去掉此函数就是异步机制
static void gprs_mu709_power_on(struct work_struct *work __attribute__((unused)))
{
gprs_mu709_opt(WNET_POWER_ON_WQ);
}
vim使用
Vim
zR 全部展开
zM全部合并
vim 快捷键
shift + i (‘I’) 进行编辑
shift + 4 (‘$’) 跳到行尾
shift + v (‘V’) 选中行
shift + 0 (‘)’) 跳到行首
先ctrl + v 模块编辑
再s,或者shift + $, shift + i进行编辑即可,编辑完后就esc就可以更改局部内容
s 删除
Ctrl+wl或wh是切换窗口来编辑
vs a.c 打开一个文件
BundleSearch 查找所有插件,找到后,yy复制想要的那一行插件到vimrc中即可vi ~/.vimrc
然后再执行BundleInstall
BundleList 当前插件
vim安装后,要把.vimrc放在里面保存即可,然后还有几个隐藏的文件夹也要放在里面
查看函数被哪些调用的话,快捷键:ctrl+\ ,然后再按s即可
或者cs find main也可以
先要安装了ctags,在程序的根目录下运行ctags -R,生成tags文件,然后在编辑程序时按Ctrl+]就会跳转到当前光标所在东西的定义处。若有多个tag,执行:ts,进行选择。按Ctrl+o即可跳回。不过,当修改过代码后,需要重新生成tags。
33.git操作,检查代码log技巧
Linux kernel 的官方 GIT地址是:
http://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git
可以从这个地址拿到 kernel 的 代码仓库。
git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
在家目录下(也就是自己的目录下)
将git执行文件放在家目录的bin下面,没有就自己创一个bin目录
将文件git-completion.bash修改文件名为 .git-completion.bash
在家目录下的.bashrc 的最后一行增加source ~/.git-completion.bash
source .bashrc
source .profile
这样git就有了补全功能
git-completion.bash文件里面有说明。
git remote -v
如果是跟踪着某个开发者的git代码库,
git blame <文件名>
然后, 找出感兴趣行上的commit ID ,用
git show <commit ID>
git log --pretty=oneline b.c
查看这次改动是由哪次提交引入的.一般可能会附加提交说明,
解释这次提交的初衷,作用等.
还可以记下作者的名字
然后放狗(google)搜: lkml +作者名字+关于这个修改或主题的一两个重要关键词,
这样可能可以直接搜到当时提交时作者发在内核列表的邮件,可能有更详细的讨论.
这么做去找找引入这些重要变化的源由.
34.内核关抢占
Symbol: PREEMPT_NONE [=y] | | Type : boolean | | Prompt: No Forced Preemption (Server) | | Defined at kernel/Kconfig.preempt:6 | | Depends on: <choice> | | Location: | | -> Kernel Features | | -> Preemption Model (<choice> [=y])
35. 处理DDR跑飞问题:
某些处理器可以处理,如果是系统休眠唤醒后出现系统乱飞的情况,可以在休眠前对DDR进行CRC校验,唤醒后再进行一次校验,两次一样即可,但是必须保证DDR无任何操作。
36.开机自启动,需要用脚本启动脚本,rc文件中
#camera drivers
if property:ro.fac.camera_number!= chmod 755 /startup/camera_drv_load.sh
if property:ro.fac.camera_number!= exec /startup/bin/sh /startup/camera_drv_load.sh
37.一个拆包的方法,i2c
/* define in iproc_smbus.c */ #define I2C_RX_LENGTH_MAX_SUPPORT 62 static int __synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data, unsigned short addr, unsigned char *data, unsigned short length) { int ret = 0; int count = 0; for (count = 0; count < length / I2C_RX_LENGTH_MAX_SUPPORT; count++) { ret = synaptics_rmi4_i2c_write(rmi4_data, addr, data + count * I2C_RX_LENGTH_MAX_SUPPORT, I2C_RX_LENGTH_MAX_SUPPORT); if (ret < 0) { dev_err(rmi4_data->pdev, "%s: I2C write over retry limit\n", __func__); return ret; } } ret = synaptics_rmi4_i2c_write(rmi4_data, addr, data + count * I2C_RX_LENGTH_MAX_SUPPORT, length % I2C_RX_LENGTH_MAX_SUPPORT); if (ret < 0) { dev_err(rmi4_data->pdev, "%s: I2C write over retry limit\n", __func__); return ret; } return ret; }
View Code
38.网络配置相关命令
udhcpc -i usb0
route
ping www.baidu.com -I usb0
有时ping不通,可以试下只保留lo和usb0,其余的全down掉
一种拆包算法
#define I2C_RX_LENGTH_MAX_SUPPORT 62 static int __synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data, unsigned short addr, unsigned char *data, unsigned short length) { int ret = 0; int count = 0; for (count = 0; count < length / I2C_RX_LENGTH_MAX_SUPPORT; count++) { ret = synaptics_rmi4_i2c_write(rmi4_data, addr, data + count * I2C_RX_LENGTH_MAX_SUPPORT, I2C_RX_LENGTH_MAX_SUPPORT); if (ret < 0) { dev_err(rmi4_data->pdev, "%s: I2C write over retry limit\n", __func__); return ret; } } ret = synaptics_rmi4_i2c_write(rmi4_data, addr, data + count * I2C_RX_LENGTH_MAX_SUPPORT, length % I2C_RX_LENGTH_MAX_SUPPORT); if (ret < 0) { dev_err(rmi4_data->pdev, "%s: I2C write over retry limit\n", __func__); return ret; } return ret; }
View Code
39.windows下保存网页的方法:
ctrl + p 就是打印,然后选择adobe PDF,确定 即可
40.gcc编译器内置选项
arm-none-linux-gnueabi-gcc -E -dM -< /dev/null
#define __DBL_MIN_EXP__ (-1021) #define __HQ_FBIT__ 15 #define __UINT_LEAST16_MAX__ 65535 #define __SFRACT_IBIT__ 0 #define __FLT_MIN__ 1.1754943508222875e-38F #define __UFRACT_MAX__ 0XFFFFP-16UR #define __UINT_LEAST8_TYPE__ unsigned char #define __DQ_FBIT__ 63 #define __INTMAX_C(c) c ## LL #define __CS_SOURCERYGXX_REV__ 57 #define __ULFRACT_FBIT__ 32 #define __SACCUM_EPSILON__ 0x1P-7HK #define __CHAR_BIT__ 8 #define __USQ_IBIT__ 0 #define __UINT8_MAX__ 255 #define __ACCUM_FBIT__ 15 #define __WINT_MAX__ 4294967295U #define __USFRACT_FBIT__ 8 #define __ORDER_LITTLE_ENDIAN__ 1234 #define __SIZE_MAX__ 4294967295U #define __WCHAR_MAX__ 4294967295U #define __LACCUM_IBIT__ 32 #define __DBL_DENORM_MIN__ ((double)4.9406564584124654e-324L) #define __FLT_EVAL_METHOD__ 0 #define __unix__ 1 #define __LLACCUM_MAX__ 0X7FFFFFFFFFFFFFFFP-31LLK #define __FRACT_FBIT__ 15 #define __UINT_FAST64_MAX__ 18446744073709551615ULL #define __SIG_ATOMIC_TYPE__ int #define __UACCUM_FBIT__ 16 #define __DBL_MIN_10_EXP__ (-307) #define __FINITE_MATH_ONLY__ 0 #define __ARMEL__ 1 #define __LFRACT_IBIT__ 0 #define __GNUC_PATCHLEVEL__ 3 #define __LFRACT_MAX__ 0X7FFFFFFFP-31LR #define __UINT_FAST8_MAX__ 255 #define __DEC64_MAX_EXP__ 385 #define __INT8_C(c) c #define __UINT_LEAST64_MAX__ 18446744073709551615ULL #define __SA_FBIT__ 15 #define __SHRT_MAX__ 32767 #define __LDBL_MAX__ 1.7976931348623157e+308L #define __FRACT_MAX__ 0X7FFFP-15R #define __ARM_ARCH_5TE__ 1 #define __UFRACT_FBIT__ 16 #define __UFRACT_MIN__ 0.0UR #define __UINT_LEAST8_MAX__ 255 #define __GXX_TYPEINFO_EQUALITY_INLINE 0 #define __UINTMAX_TYPE__ long long unsigned int #define __LLFRACT_EPSILON__ 0x1P-63LLR #define __linux 1 #define __DEC32_EPSILON__ 1E-6DF #define __CHAR_UNSIGNED__ 1 #define __UINT32_MAX__ 4294967295U #define __ULFRACT_MAX__ 0XFFFFFFFFP-32ULR #define __TA_IBIT__ 64 #define __LDBL_MAX_EXP__ 1024 #define __WINT_MIN__ 0U #define __linux__ 1 #define __ULLFRACT_MIN__ 0.0ULLR #define __SCHAR_MAX__ 127 #define __WCHAR_MIN__ 0U #define __INT64_C(c) c ## LL #define __DBL_DIG__ 15 #define __LLACCUM_MIN__ (-0X1P31LLK-0X1P31LLK) #define __SIZEOF_INT__ 4 #define __SIZEOF_POINTER__ 4 #define __USACCUM_IBIT__ 8 #define __USER_LABEL_PREFIX__ #define __STDC_HOSTED__ 1 #define __LDBL_HAS_INFINITY__ 1 #define __LFRACT_MIN__ (-0.5LR-0.5LR) #define __HA_IBIT__ 8 #define __TQ_IBIT__ 0 #define __FLT_EPSILON__ 1.1920928955078125e-7F #define __APCS_32__ 1 #define __USFRACT_IBIT__ 0 #define __LDBL_MIN__ 2.2250738585072014e-308L #define __FRACT_MIN__ (-0.5R-0.5R) #define __DEC32_MAX__ 9.999999E96DF #define __DA_IBIT__ 32 #define __INT32_MAX__ 2147483647 #define __UQQ_FBIT__ 8 #define __SIZEOF_LONG__ 4 #define __UACCUM_MAX__ 0XFFFFFFFFP-16UK #define __UINT16_C(c) c #define __DECIMAL_DIG__ 17 #define __LFRACT_EPSILON__ 0x1P-31LR #define __ULFRACT_MIN__ 0.0ULR #define __gnu_linux__ 1 #define __LDBL_HAS_QUIET_NAN__ 1 #define __ULACCUM_IBIT__ 32 #define __UACCUM_EPSILON__ 0x1P-16UK #define __GNUC__ 4 #define __ULLACCUM_MAX__ 0XFFFFFFFFFFFFFFFFP-32ULLK #define __HQ_IBIT__ 0 #define __FLT_HAS_DENORM__ 1 #define __SIZEOF_LONG_DOUBLE__ 8 #define __BIGGEST_ALIGNMENT__ 8 #define __DQ_IBIT__ 0 #define __DBL_MAX__ ((double)1.7976931348623157e+308L) #define __ULFRACT_IBIT__ 0 #define __INT_FAST32_MAX__ 2147483647 #define __DBL_HAS_INFINITY__ 1 #define __ACCUM_IBIT__ 16 #define __DEC32_MIN_EXP__ (-94) #define __THUMB_INTERWORK__ 1 #define __LACCUM_MAX__ 0X7FFFFFFFFFFFFFFFP-31LK #define __INT_FAST16_TYPE__ int #define __LDBL_HAS_DENORM__ 1 #define __DEC128_MAX__ 9.999999999999999999999999999999999E6144DL #define __INT_LEAST32_MAX__ 2147483647 #define __ARM_PCS 1 #define __DEC32_MIN__ 1E-95DF #define __ACCUM_MAX__ 0X7FFFFFFFP-15K #define __DBL_MAX_EXP__ 1024 #define __USACCUM_EPSILON__ 0x1P-8UHK #define __DEC128_EPSILON__ 1E-33DL #define __SFRACT_MAX__ 0X7FP-7HR #define __FRACT_IBIT__ 0 #define __PTRDIFF_MAX__ 2147483647 #define __UACCUM_MIN__ 0.0UK #define __UACCUM_IBIT__ 16 #define __LONG_LONG_MAX__ 9223372036854775807LL #define __SIZEOF_SIZE_T__ 4 #define __ULACCUM_MAX__ 0XFFFFFFFFFFFFFFFFP-32ULK #define __SIZEOF_WINT_T__ 4 #define __SA_IBIT__ 16 #define __ULLACCUM_MIN__ 0.0ULLK #define __GXX_ABI_VERSION 1002 #define __UTA_FBIT__ 64 #define __SOFTFP__ 1 #define __FLT_MIN_EXP__ (-125) #define __USFRACT_MAX__ 0XFFP-8UHR #define __UFRACT_IBIT__ 0 #define __INT_FAST64_TYPE__ long long int #define __DBL_MIN__ ((double)2.2250738585072014e-308L) #define __LACCUM_MIN__ (-0X1P31LK-0X1P31LK) #define __ULLACCUM_FBIT__ 32 #define __ULLFRACT_EPSILON__ 0x1P-64ULLR #define __DEC128_MIN__ 1E-6143DL #define __REGISTER_PREFIX__ #define __UINT16_MAX__ 65535 #define __DBL_HAS_DENORM__ 1 #define __ACCUM_MIN__ (-0X1P15K-0X1P15K) #define __SQ_IBIT__ 0 #define __UINT8_TYPE__ unsigned char #define __UHA_FBIT__ 8 #define __NO_INLINE__ 1 #define __SFRACT_MIN__ (-0.5HR-0.5HR) #define __UTQ_FBIT__ 128 #define __FLT_MANT_DIG__ 24 #define __VERSION__ "4.6.3" #define __UINT64_C(c) c ## ULL #define __ULLFRACT_FBIT__ 64 #define __FRACT_EPSILON__ 0x1P-15R #define __ULACCUM_MIN__ 0.0ULK #define __UDA_FBIT__ 32 #define __LLACCUM_EPSILON__ 0x1P-31LLK #define __FLOAT_WORD_ORDER__ __ORDER_LITTLE_ENDIAN__ #define __USFRACT_MIN__ 0.0UHR #define __UQQ_IBIT__ 0 #define __INT32_C(c) c #define __DEC64_EPSILON__ 1E-15DD #define __ORDER_PDP_ENDIAN__ 3412 #define __DEC128_MIN_EXP__ (-6142) #define __UHQ_FBIT__ 16 #define __LLACCUM_FBIT__ 31 #define __INT_FAST32_TYPE__ int #define __UINT_LEAST16_TYPE__ short unsigned int #define unix 1 #define __INT16_MAX__ 32767 #define __SIZE_TYPE__ unsigned int #define __UINT64_MAX__ 18446744073709551615ULL #define __UDQ_FBIT__ 64 #define __INT8_TYPE__ signed char #define __ELF__ 1 #define __ULFRACT_EPSILON__ 0x1P-32ULR #define __LLFRACT_FBIT__ 63 #define __FLT_RADIX__ 2 #define __INT_LEAST16_TYPE__ short int #define __LDBL_EPSILON__ 2.2204460492503131e-16L #define __UINTMAX_C(c) c ## ULL #define __SACCUM_MAX__ 0X7FFFP-7HK #define __SIG_ATOMIC_MAX__ 2147483647 #define __VFP_FP__ 1 #define __SIZEOF_PTRDIFF_T__ 4 #define __CS_SOURCERYGXX_MIN__ 3 #define __LACCUM_EPSILON__ 0x1P-31LK #define __DEC32_SUBNORMAL_MIN__ 0.000001E-95DF #define __INT_FAST16_MAX__ 2147483647 #define __UINT_FAST32_MAX__ 4294967295U #define __UINT_LEAST64_TYPE__ long long unsigned int #define __USACCUM_MAX__ 0XFFFFP-8UHK #define __SFRACT_EPSILON__ 0x1P-7HR #define __FLT_HAS_QUIET_NAN__ 1 #define __FLT_MAX_10_EXP__ 38 #define __LONG_MAX__ 2147483647L #define __DEC128_SUBNORMAL_MIN__ 0.000000000000000000000000000000001E-6143DL #define __FLT_HAS_INFINITY__ 1 #define __unix 1 #define __USA_FBIT__ 16 #define __UINT_FAST16_TYPE__ unsigned int #define __DEC64_MAX__ 9.999999999999999E384DD #define __CHAR16_TYPE__ short unsigned int #define __PRAGMA_REDEFINE_EXTNAME 1 #define __CS_SOURCERYGXX_MAJ__ 2012 #define __INT_LEAST16_MAX__ 32767 #define __DEC64_MANT_DIG__ 16 #define __INT64_MAX__ 9223372036854775807LL #define __UINT_LEAST32_MAX__ 4294967295U #define __SACCUM_FBIT__ 7 #define __INT_LEAST64_TYPE__ long long int #define __INT16_TYPE__ short int #define __INT_LEAST8_TYPE__ signed char #define __SQ_FBIT__ 31 #define __DEC32_MAX_EXP__ 97 #define __INT_FAST8_MAX__ 127 #define __INTPTR_MAX__ 2147483647 #define __QQ_FBIT__ 7 #define linux 1 #define __UTA_IBIT__ 64 #define __LDBL_MANT_DIG__ 53 #define __SFRACT_FBIT__ 7 #define __SACCUM_MIN__ (-0X1P7HK-0X1P7HK) #define __DBL_HAS_QUIET_NAN__ 1 #define __SIG_ATOMIC_MIN__ (-__SIG_ATOMIC_MAX__ - 1) #define __INTPTR_TYPE__ int #define __UINT16_TYPE__ short unsigned int #define __WCHAR_TYPE__ unsigned int #define __SIZEOF_FLOAT__ 4 #define __USQ_FBIT__ 32 #define __UINTPTR_MAX__ 4294967295U #define __DEC64_MIN_EXP__ (-382) #define __ULLACCUM_IBIT__ 32 #define __INT_FAST64_MAX__ 9223372036854775807LL #define __FLT_DIG__ 6 #define __UINT_FAST64_TYPE__ long long unsigned int #define __INT_MAX__ 2147483647 #define __LACCUM_FBIT__ 31 #define __USACCUM_MIN__ 0.0UHK #define __UHA_IBIT__ 8 #define __INT64_TYPE__ long long int #define __FLT_MAX_EXP__ 128 #define __UTQ_IBIT__ 0 #define __DBL_MANT_DIG__ 53 #define __INT_LEAST64_MAX__ 9223372036854775807LL #define __DEC64_MIN__ 1E-383DD #define __WINT_TYPE__ unsigned int #define __UINT_LEAST32_TYPE__ unsigned int #define __SIZEOF_SHORT__ 2 #define __ULLFRACT_IBIT__ 0 #define __LDBL_MIN_EXP__ (-1021) #define __arm__ 1 #define __UDA_IBIT__ 32 #define __INT_LEAST8_MAX__ 127 #define __LFRACT_FBIT__ 31 #define __LDBL_MAX_10_EXP__ 308 #define __DBL_EPSILON__ ((double)2.2204460492503131e-16L) #define __UINT8_C(c) c #define __INT_LEAST32_TYPE__ int #define __SIZEOF_WCHAR_T__ 4 #define __UINT64_TYPE__ long long unsigned int #define __LLFRACT_MAX__ 0X7FFFFFFFFFFFFFFFP-63LLR #define __TQ_FBIT__ 127 #define __INT_FAST8_TYPE__ signed char #define __ULLACCUM_EPSILON__ 0x1P-32ULLK #define __UHQ_IBIT__ 0 #define __LLACCUM_IBIT__ 32 #define __DBL_DECIMAL_DIG__ 17 #define __DEC_EVAL_METHOD__ 2 #define __TA_FBIT__ 63 #define __UDQ_IBIT__ 0 #define __ORDER_BIG_ENDIAN__ 4321 #define __ACCUM_EPSILON__ 0x1P-15K #define __UINT32_C(c) c ## U #define __INTMAX_MAX__ 9223372036854775807LL #define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__ #define __FLT_DENORM_MIN__ 1.4012984643248171e-45F #define __LLFRACT_IBIT__ 0 #define __INT8_MAX__ 127 #define __UINT_FAST32_TYPE__ unsigned int #define __CHAR32_TYPE__ unsigned int #define __FLT_MAX__ 3.4028234663852886e+38F #define __USACCUM_FBIT__ 8 #define __INT32_TYPE__ int #define __SIZEOF_DOUBLE__ 8 #define __FLT_MIN_10_EXP__ (-37) #define __UFRACT_EPSILON__ 0x1P-16UR #define __INTMAX_TYPE__ long long int #define __DEC128_MAX_EXP__ 6145 #define __GNUC_MINOR__ 6 #define __UINTMAX_MAX__ 18446744073709551615ULL #define __DEC32_MANT_DIG__ 7 #define __HA_FBIT__ 7 #define __DBL_MAX_10_EXP__ 308 #define __LDBL_DENORM_MIN__ 4.9406564584124654e-324L #define __INT16_C(c) c #define __STDC__ 1 #define __PTRDIFF_TYPE__ int #define __LLFRACT_MIN__ (-0.5LLR-0.5LLR) #define __DA_FBIT__ 31 #define __UINT32_TYPE__ unsigned int #define __UINTPTR_TYPE__ unsigned int #define __USA_IBIT__ 16 #define __DEC64_SUBNORMAL_MIN__ 0.000000000000001E-383DD #define __ARM_EABI__ 1 #define __DEC128_MANT_DIG__ 34 #define __LDBL_MIN_10_EXP__ (-307) #define __SIZEOF_LONG_LONG__ 8 #define __ULACCUM_EPSILON__ 0x1P-32ULK #define __SACCUM_IBIT__ 8 #define __LDBL_DIG__ 15 #define __FLT_DECIMAL_DIG__ 9 #define __UINT_FAST16_MAX__ 4294967295U #define __GNUC_GNU_INLINE__ 1 #define __ULLFRACT_MAX__ 0XFFFFFFFFFFFFFFFFP-64ULLR #define __UINT_FAST8_TYPE__ unsigned char #define __USFRACT_EPSILON__ 0x1P-8UHR #define __ULACCUM_FBIT__ 32 #define __ARM_FEATURE_DSP 1 #define __QQ_IBIT__ 0
View Code
linux-3.6.5/scripts
vi gcc-x86_32-has-stack-protector.sh
#!/bin/sh echo "int foo(void) { char X[200]; return 3; }" | $* -S -x c -c -O0 -fstack-protector - -o - 2> /dev/null | grep -q "%gs" if [ "$?" -eq "0" ] ; then echo y else echo n fi
%gs为栈保护
41.如果反汇编后有%gs,就说明内核有栈保护
arm_build.sh
arm-none-linux-gnueabi-gcc -S -fstack-protector -o stack test_stack_protector.c
test_stack_protector.c
int foo(void) { char X[200]; return 3; }
./arm_build.sh
vi stack
.arch armv5te .fpu softvfp .eabi_attribute 20, 1 .eabi_attribute 21, 1 .eabi_attribute 23, 3 .eabi_attribute 24, 1 .eabi_attribute 25, 1 .eabi_attribute 26, 2 .eabi_attribute 30, 6 .eabi_attribute 34, 0 .eabi_attribute 18, 4 .file "test_stack_protector.c" .text .align 2 .global foo .type foo, %function foo: .fnstart @ args = 0, pretend = 0, frame = 208 @ frame_needed = 1, uses_anonymous_args = 0 stmfd sp!, {fp, lr} .save {fp, lr} .setfp fp, sp, #4 add fp, sp, #4 .pad #208 sub sp, sp, #208 ldr r3, .L3 ldr r3, [r3, #0] str r3, [fp, #-8] mov r3, #3 mov r0, r3 ldr r3, .L3 ldr r2, [fp, #-8] ldr r3, [r3, #0] cmp r2, r3 beq .L2 bl __stack_chk_fail .L2: sub sp, fp, #4 ldmfd sp!, {fp, pc} .L4: .align 2 .L3: .word __stack_chk_guard .fnend .size foo, .-foo .ident "GCC: (Sourcery CodeBench Lite 2012.03-57) 4.6.3" .section .note.GNU-stack,"",%progbits
View Code
42.为了保证代码不乱序,内存屏障的建立
#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
eg:
aaa();
wmb();
bbb();
no_console_suspend
initcall_debug
说明initcall_debug是一个内核参数,可以跟踪initcall,用来定位内核初始化的问题。在cmdline中增加initcall_debug后,内核启动过程中会增加如下形式的日志,在调用每一个init函数前有一句打印,结束后再有一句打印并且输出了该Init函数运行的时间,通过这个信息可以用来定位启动过程中哪个init函数运行失败以及哪些init函数运行时间较长
休眠唤醒调试还可以打开【Power management options】===》
[*] Power Management Debug Support | |
| | [*] Extra PM attributes in sysfs for low-level debugging/testing | |
| | [*] Test suspend/resume and wakealarm during bootup
43.网络 netstate
netstate –nao
svn co svn:xxx --depth=empty
ls
svn ls
cd aa/
ls
svn ls
svn up release_branches --depth=empty
cd release_branches/
ls
svn ls
svn up xxx
44.内核异步通知
retval = request_irq(pdev->irq, MioSoC_isr, IRQF_SHARED , "MioSoC", pmio);
中断处理程序:
static irqreturn_t MioSoC_isr(int irq, void *data)
{
struct MioSoC_device *dev = data;
spin_lock(&dev->regs_lock);
dwIntStatus = inw(pmio->caddr +0x4c); // 读取卡上的控制缓存器中断状态
if (dwIntStatus & 0x4) // 检查是否为本卡的中断
{
outw((dwIntStatus & (~0x43)),pmio->caddr+0x4c);
if (pmio->async_queue )
kill_fasync(&dev->async_queue, SIGIO, POLL_IN); //发出异步通知信号
outw(dwIntStatus,pmio->caddr + 0x4c);
}
spin_unlock(&dev->regs_lock);
wake_up_interruptible(&dev->wait);
return IRQ_HANDLED;
}
45.线程处理,线程安全
futex
46.unicore32
unicore32的代码写的很好,可以参考
47.defio 双缓冲机制
48.strace命令
strace -o t.log ./a.out
49.Linux上搭建web服务器,实现web控制嵌入式设备
随着Internet技术的兴起,在嵌入式设备的管理与交互中,基于Web方式的应用成为目 前的主流,这种程序结构也就是大家非常熟悉的B/S结构,即在嵌入式设备上运行一个支持脚本或CGI功能的Web服务器,能够生成动态页面,在用户端只需 要通过Web浏览器就可以对嵌入式设备进行管理和监控,非常方便实用。
路由器上现在不用boa服务器了,一般用uhttpd和goahead,这样可以对CGI进行控制
50. 内核中的set_freezable与wait_event_freezable_timeout,进程等待
到目前为止,我们的控制线程就已经分析完了,不过我们发现,这个控制线程是在usb_stor_acquire_resources中定义的,在usb_stor_acquire_resources之后,我们还创建了usb_stor_scan_thread线程,这是一个扫描线程。
static int usb_stor_scan_thread(void * __us)
{
struct us_data *us = (struct us_data *)__us;
printk(KERN_DEBUG
"usb-storage: device found at %d\n", us->pusb_dev->devnum);
set_freezable(); //设备在一定时间内没有响应,会挂起
if (delay_use > 0) { // delay_use秒后如果U盘没拔出则继续执行,否则执行disconnect
printk(KERN_DEBUG "usb-storage: waiting for device "
"to settle before scanning\n");
wait_event_freezable_timeout(us->delay_wait,test_bit(US_FLIDX_DONT_SCAN, &us->dflags), delay_use * HZ);
}
if (!test_bit(US_FLIDX_DONT_SCAN, &us->dflags)) {
if (us->protocol == US_PR_BULK &&
!(us->fflags & US_FL_SINGLE_LUN)) {
mutex_lock(&us->dev_mutex);
us->max_lun = usb_stor_Bulk_max_lun(us); //询问设备支持多少个LUN
mutex_unlock(&us->dev_mutex);
}
scsi_scan_host(us_to_host(us));
printk(KERN_DEBUG "usb-storage: device scan complete\n");
}
complete_and_exit(&us->scanning_done, 0); //本进程结束,唤醒disconnect中的进程
}
对于上面这个扫描线程,里面的usb_stor_Bulk_max_lun函数完成了主机控制器与设备之间的第一次通信。USB驱动程序首先发送一个命令,然后设备根据命令返回一些信息,这里显示的是一个表示LUN个数的数字,usb_stor_Bulk_max_lun完成的是一次控制传输。
51.Linux resume
linux的resume是根据device的加载顺序来执行的
52.setup_time中断
这种虽然是软中断处理,但一样是中断上下文,不可以在处理函数中休眠,或者发生进程调度的事情,这样会死机,workqueue.c中只有一种机制才可以这样做,tasklet
53.休眠唤醒
休眠唤醒除了在配置文件中cmdline增加no_console_suspend,还可以开机如下操作,即可打印出休眠唤醒的全部log
echo N > /sys/module/printk/parameters/console_suspend
54.pwm使用
// disable pwm 的正确流程是:
pwm_config(prn_stb_pwm, 0, period_ns); ===》这样才是安全的
pwm_disable(prn_stb_pwm);
而不是:
pwm_disable(prn_stb_pwm);
55. 算一张表里有多少个1
hweight8
欢迎交流,如有转载请注明出处
新浪博客:http://blog.sina.com.cn/u/2049150530
博客园:http://www.cnblogs.com/sky-heaven/
知乎:http://www.zhihu.com/people/zhang-bing-hua