小白学数据分析-----> 13个要重点关注的数据指标[社交游戏,翻译自国外blog] part_1

1.流失[Churn]

每个月离开游戏的用户量,有时候也选择用每周来衡量。举个例子,比如一款游戏在月初有100人在游戏,其中70个人在那个月结束后仍旧留在游戏中,那么我们就说流失率为30%,因为那个月中30个人从最初的100人中离开了游戏。

流失率也被用来分析一个玩家离开游戏的可能性。比如,一个游戏100个用户,其中30%的用户离开[30%流失率]。那么就意味着离开的可能性为30%,同样换个角度,也意味着,留下来的可能性为70%。所以如果我们要计算那个月结束后有多少玩家仍旧留在游戏中,那么我们就可以这样计算:留下来的百分比*月初的用户量,即70%*100=70,也就是说,该月结束时,有70个玩家留下来继续游戏。

如果我们计算两个月后,有多少人还留在游戏中,我们可以这么计算:70%*70%*100=49人,就是乘以两次留下来的百分比,进而计算两个月后仍有多少人在游戏。

把流失率作为一种流失可能性对待,能够帮助我们估计平均一个用户在游戏中生命周期长度。等式如下:

1/% churn =Ave.player LifeTime

举个例子,我们的月流失率为30%,那么我们的用户生命周期长度为:

1/30%=3.3 month

这点对于我们而言很重要,尤其是我们要计算平均每个用户对于我们的价值量时,这里后续会提到一个LTV(用户生命周期价值)。

如果我们忽略一个社交游戏或者其他游戏第一周的流失率,我们会发现周与周的流失率一直在5%到15%之间。每周5%的流失率对应每个月大概20%的月流失,每周15%的流失对应每个月50%的流失率。

2.平均每付费用户的收益[ARPPU]

平均每付费用户的收益,这个一般是按照月来计算的。换句话说,平均每个玩家花费了多少钱(注:大多数玩家是不花钱的,ARPPU仅仅计算那部分花钱的用户情况)。计算如下:

月总收入/月付费用户数

通常这是存在一些标杆的比如

3.平均每活跃用户收益[ARPU]

平均每活跃用户收益,如同ARPPU一样,这个也是每个月计算一次,ARPU的计算如下:

月总收入/月独立用户(月活跃用户)

依据账户方法论,这个指标能够告诉你从来自于衣服类道具购买的收入,该如何在用户生命周期中被均摊,同样的比如消耗性的,能量性(红、蓝药)的道具也能立刻通过此加以认识。但我认为这有一点小复杂。

Zynga的财报中我们看到他们每个月的ARPU大概是$0.40,当然这是他们全部游戏的一个计算值,实际上不同类型游戏的表现比另一些货币化的更好。

  • Casual Social Game: A casual game is designed for anyone, including those without prior gaming experience. Such as Farmville, Cityville, Bejeweled, Words with Friends. ARPU around $0.10 – $0.20
  • Virtual Currency Poker and Casino Games: Traditional gambling games that only allow players to play with virtual currency, such as Zynga Poker, Slotomania. ARPU around $0.25 – $1.25
  • Mid-core Social Game: Typically more investment is required to succeed. Tends to be more competitive in nature, and players can be punished for not playing well, such as Mafia Wars and Backyard Monsters. ARPU: $0.25 – $1.25
  • Virtual Worlds: Online worlds where players create avatars and interact in realtime, such as Habbo Hotel, Club Penguin, Runescape, and Puzzle Pirates. ARPU around $0.84 – $1.62

4.生命周期价值[LTV]

生命周期价值指的是平均每个玩家的消费金额。LTV包括了付费与非付费玩家。LTV计算如下:

ARPU*玩家留存游戏中的平均月的数量[玩家登录游戏平均月数量即 平均生命周期]

比如,如果我们的ARPU=$0.5,玩家总计在有5个月每个月都登录过游戏[平均生命周期=5month],那么LTV就是

$0.5*5=$2.5

刚才我们说到我们使用流失率来计算用户平均生命周期,实际是很有效的,你大概在一个月后就能知道平均用户会呆在游戏中多久,也包括他们会花多少钱(ARPU),而且我们也能够知道每个用户的生命周期价值是多少(LTV)。通过此,你就可以了解,每个用户对于你的价值是多少,进而你也就明白了广告投放你要为新用户话费多少。

5.K因子[K-Factor]

病毒增长衡量标准。计算如下:

感染率*转化率

所谓转化率指的是当感染后转化为新用户的情况。

如果K-Factor是1,那么就意味着每个玩家都能带来另一个玩家到你的游戏中,游戏不增长,不下降[用户量];

如果K-Factor是小于1,那么游戏现在进行的营销将会耗尽玩家;

如果K-Factor是大于1,那么你的游戏时按照指数级增长的。

其实,极少的游戏能够做到K-Factor大于1的情况,这也是为什么Zynga在2011年的Q1花费了4000w美元在市场营销上面。所有的游戏需要营销支持发展。当然成功游戏与失败游戏之间的区别就在于成功游戏花钱在营销上,但是却能够从获得玩家身上同样赚取利润。这也是接下来的定义为什么这么重要。

6.CPA

获得每个用户的花费,用于衡量把一个用户导入到游戏中的花费。CPA的衡量多种形式,推荐的形式如下:

新访问者--->注册--->完成新手教程--->变成真正意义的玩家

因此,广告联盟计算是:

总花费/带来的新玩家

比如花费1000美元在Google Adwords,获得1000玩家,那么CPA就是:1000/1000=1美元CPA

未完待续

 

原文:

 

1. Churn

 

The percentage of users who leave your game each month, or sometimes measured as the percentage who leave each week. For example, if a game that has 100 users at the start of the month, and 70 of those users are still playing the game at the end of the month, then we would say the churn rate is 30% because 30 of the original 100 people left that month.

The churn rate can also be thought of as a probability that a player will leave. For example, imagine a game that has 100 players and a 30% of any player leaving (30% churn). That 30% chance of leaving could also be thought of as a 70% chance of staying. So if we want to figure out how many players will be left at the end of the month all we multiply the chance of staying by the number of players at the start of the month. So 70% x 100 = 70 players at the end of the month.

 

To calculate how many will be left after two months we can simply do it twice, 70% x 70% x 100 = 49 players after two months.

 

Treating churn as a probability allows us to estimate how long the average person plays your game. The equation is simple: 1 / % Churn = Ave. Player Lifetime. For example, with our 30% monthly churn rate we find that 1 / 30% = 3.3 months average player lifetime.

 

This comes in important later when we want to calculate how much the average player is worth to us, or the LifeTime Value (LTV).

 

Ignoring the first week (we’ll talk about that in the Onboarding definition) a social game or virtual world will typically see week to week churn around 5% to 15%. A 5% weekly churn is equivalent to roughly 20% monthly churn. While 15% weekly churn is equivalent to 50% monthly churn.

 

Phew, that was a long one, don’t worry, the rest are shorter!

 

2. ARPPU

 

Average Revenue Per Paying User, usually measured each month. In other words, how much money does the average customer spend (most of your players will never spend any money, ARPPU only includes those who spend money). It can be calculated as total monthly revenue divided by total monthly paying users. Some benchmarks:

 

 

Club Penguin, on the other hand, has subscriptions and no micropayments. Their ARPPU is somewhere around the $6 mark.

 

3. ARPU

 

Average revenue per active user, and like the ARPPU this is also measured each month. The ARPU is calculated by dividing the total revenue for the month by the total number of unique players for the month. Sort of. Depending on the account methodology used it could be said that revenue from the purchase of a virtual clothing item should be amortized over the players lifetime, where as energy and consumables can be recognized immediately. I think that’s just making it all a little too complicated!

 

From the Zynga IPO filing (link) that the average revenue per user per month is around $0.40. Of course, that’s across their whole portfolio of games. In practice, different types of games monetize better than others.

 

  • Casual Social Game: A casual game is designed for anyone, including those without prior gaming experience. Such as Farmville, Cityville, Bejeweled, Words with Friends. ARPU around $0.10 – $0.20
  • Virtual Currency Poker and Casino Games: Traditional gambling games that only allow players to play with virtual currency, such as Zynga Poker, Slotomania. ARPU around $0.25 – $1.25
  • Mid-core Social Game: Typically more investment is required to succeed. Tends to be more competitive in nature, and players can be punished for not playing well, such as Mafia Wars and Backyard Monsters. ARPU: $0.25 – $1.25
  • Virtual Worlds: Online worlds where players create avatars and interact in realtime, such as Habbo Hotel, Club Penguin, Runescape, and Puzzle Pirates. ARPU around $0.84 – $1.62

 

4. LTV

 

The Life Time Value is the average amount of money spent by each player. The LTV includes paying and no-paying players. To calculate the LTV you multiply the ARPU by the average number of months a player stays in your game. For example, if the ARPU is $0.50 and the average player lifetime is 5 months then the LTV is $0.50 x 5 = $2.50.

 

Earlier we used the Churn Rate to calculate the average player life time. This is really useful. After only 1 month you know roughly how long the average player will stay in the game, and you know how much they spend on average (ARPU) and therefore how much each player is worth over their lifetime (LTV). Through knowing how much each player is worth you can figure out how much you can afford to spend on advertising for new players.

 

5. K-Factor

 

The measure of viral growth. It’s calculated by multiplying the Infection Rate by the Conversion rate. The conversion rate is when the ‘Infection’ turns into a new user.

 

A K-Factor of 1 means every member is bringing one additional member to your game, your game is not growing nor is the game declining.  A K-Factor of less than 1 means that without ongoing marketing your game will run out of players. While a K-Factor greater than 1 means that your game is growing exponentially.

 

It is very rare that any game will ever have a K-Factor greater than 1. That’s why Zynga spent $40,000,000 on marketing in Q1 2011. All games need marketing to continue growing. Of course the difference between a successful game and a failure is that a successful game spends money on marketing but still makes a profit on each player they acquire. That’s why the next definition is so important…

 

6. CPA

 

The Cost Per Acquisition is a measure of the cost of bringing that user to your game. The CPA can be measured in different ways. We recommend measuring the CPA as the cost to convert a new visitor from the homepage into someone who has registered, finished the tutorial, and become a player. So the CPA for an advertising campaign can be calculated by dividing the total spend by the number of new players. If we spend $1000 on Google Adwords and get 2000 new players then our CPA is $1000 / 1000 = $1.00 CPA.

 

 

 

时间: 2024-10-10 23:48:24

小白学数据分析-----> 13个要重点关注的数据指标[社交游戏,翻译自国外blog] part_1的相关文章

小白学数据分析------>日活跃人数分析

从今天开始,特开辟一个小专栏,题目暂定为小白学数据分析,鄙人不才,在数据分析的道路上走的崎岖坎坷,同时数据分析本身是一个多面和复杂的工作,要懂得理论(统计.概率.数据挖掘.算法.模型)更要懂得业务,懂得行业理论,还要有灵活多变的思维,想想还是很复杂和麻烦的,所讲内容不但是理论,不仅是数据,尽量把这些东西综合起来,立体的来看,鄙人水平有限,很多的内容是尝试和改进,参考了很多的材料,在木有高人指点和牛人帮助的情况下,我只能借助浩瀚的网络知识和自己的悟性,今天决心拿出来给各位主要是帮助大家和我一起进步

小白学数据分析----->付费用户的金字塔模型实践操作

免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下. 感悟和理论 得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法.连接如下: http://www.gamesbrief.com/2011/11/wh

小白学数据分析----->数据指标 累计用户数的使用

小白学数据分析--à数据指标累计用户数的使用 累计用户数是指注册用户数的累计,即可以认为是新用户的累计.在一般的数据统计中,我们基本上都会涉及到这个指标,且这个指标是逐渐累加的,比如: 时间                   注册用户数[新登用户]           累计注册用户数 1日                    100                                                 100 2日                    120   

小白学数据分析------>把握分析标准与敏感度

写在正文之前,想说几句话,今天是2012年3月16日,是我开博客以来的第9个月,9个月让我成长的非常迅速,这期间我收获了很多东西,认识了很多人,开了群,见了网站,持续的写博,从来没想到我的博客会有这么大的作用,从来没有SEO,从来没推广,从来没有任何宣传,我想到和我做的就是把我自己的成长纪录下来,把网游数据分析的点滴分享出来,当然我希望有人看,但是我毕竟不是高手,只是一个小白,小白只能是学习心得的纪录和整理,帮助自己理顺思路,很希望自己的文章有人看,因为那样就会有高手帮助我指点问题.今天 博客9

小白学数据分析之关联分析理论篇

关联分析的学习 在说关联分析之前,先说说自己这段时间的一些感受吧,这段时间相对轻松一些,有一些时间自己自己来学习一些新东西和知识,然而却发现捧着一本数据挖掘理论的书籍在一点一点的研读实在是很漫长,而且看过了没有什么感觉.数据这一行理论很多,算法很多,模型很多,自己现在一直是结合业务来做的数据分析与挖掘,相比电商而言,游戏业做的数据大多很糙,但是仅仅结合业务和运营,更加注重我们客户的质量和维护,当然这不是说电商没做,实际上电商一直在做,然而最近一次经历发现,我们过多的时候去讨论了算法,模型,新理论

小白学数据分析----->首次购买记录分析方法

最近几天比较忙,大家都在问如何建立比较完整和有效的数据分析平台,说实话这个问题我考虑了很久,有效并有深度得数据挖掘与分析平台对于游戏产品的质量改善,人气.收益的提升,玩家资源的保有 ,客群分析非常有必要.众多经分系统的好处不在此处解释,且看今天讨论的内容,首次购买记录分析. 在如今道具收费的免费游戏中,首次购买记录的分析发挥着巨大的作用,这与电商的购买不太一样,还是存在很大的区别.道具收费的游戏中,道具购买是我们收益的主体,如何对于道具购买的分析是非常重要的一环. 由于道具收费的免费游戏,玩家存

小白学数据分析------->充值记录分析

   充值记录分析的方法有很多种,维度很多,今天就说说一个比较初级的分析方法,希望对于各位有一定的帮助和指导. 首先来看一下充值记录的格式,一般而言我们取到的数据都是交易格式(什么事交易格式这里不说了,大家应该都了解) 账户 充值额 充值大区 充值时间 1 100 A 2012-4-9 1 25 A 2012-4-7 2 50 A 2012-4-9 3 4 4 100 200 50 A A B 2012-4-5 2012-4-2 2012-4-1                     以上为我

小白学数据分析----->如何设计和分析数据指标

今天说到的这个题目,看起来有点大,不过作为游戏数据分析师,早晚都要设计和分析数据指标.在<移动游戏运营数据分析指标白皮书>(http://www.xuefenxi.com/forum.php?mod=viewthread&tid=2&extra=page%3D1)中,提炼了一些针对游戏数据分析的指标,这只是分析工作的第一步,还要有效的组织起来,并按照需求进行细分,即按需进行二次设计和分析.白皮书的指标旨在规范大家对于一些最基本最常用概念的认识和学习,有所领悟,有所发挥. 而今天

小白学数据分析-----&gt; 利用SPSS对DAU/MAU进行比率分析

最近在看几个数据分析平台的数据,基本上都有DAU/MAU这个指标,这个指标很早之前就在社交游戏平台得以广泛使用,对于这个指标的一些解析,以前有写过,今天换个角度,通过比率分析来具体的分析一下这个DAU/MAU.或许从中你会得到一些其他的信息. DAU/MAU的传统分析与局限性 首先,我们来看一下这个图: 此图总结的是2011年12月25日到2012年9月19日的DAU/MAU的比值曲线图,可以看到初期的的变化比较剧烈,这点是因为刚刚开始测试,初期的DAU导入速度比MAU导入速度更快一些,因此此时