【★】路由环路大总结!

一。前言:

      
"人类的创造力与破坏力同样强大"。互联网行业尤其是网络构建这一领域,从根本上一直存在着一个无奈之处:网络本可以设计的很简单,只要实现网络的连通性即可,甚至全互联,但就是因为要fight
against"天灾人祸",尤其是人祸,互联网才衍生出了纷繁复杂的路由协议和各种因特网服务,以及"网络安全"这个庞大的领域。这也是为什么说当今所有的网络通讯流量中,80%的资源都被浪费(用于承载路由消息,协议字段等信息),只有20%被用以有效数据的传输。

 

防环机制就是在这样一个大背景下产生的。

      
环路出现在互联网的各个层面,不同环路的出现原因与解决方法也不同。通常网络环路分为第二层环路和第三层环路,所有环路的形成都是由目的路径不明确导致混乱而造成的。二层环路主要就是交换机广播流的恶性循环。

      
三层环路就复杂多了,通常由各种网络故障导致!!!也是本文研究的重点。笔者将三层环路分成三类:单链路环路、跨结点环路、区域/AS间环路。

 

二。交换层广播流与生成树:

      
众所周知,交换网络是一个小型的本地接入网(LAN),所以二层交换机默认允许转发广播流(路由器则默认丢弃)。除了广播流,交换机查询mac地址表无果时会将数据帧从除接收接口外的所有接口发送出去。

      
所以最初,当三个交换机两两相连时,一个数据帧会在其中无限循环。生成树就是为了让交换网络中防环而出现的。由于具体的生成树工作原理过于复杂需另成文,在此只做介绍不做详解。

      
生成树最原始的版本是802.1d,也就是STP(Spanning Tree
Protocol),但这个版本的标准是所有VLAN共用一个生成树,所以也叫CST(Common Spanning
Tree)思科在此基础上增强了一下,发布了PVST+(Per Vlan Spanning Tree)。

      
802.1d的下一个版本是802.1w,也就是RSTP(Rapid
STP),但还是共用生成树,搞不懂IEEE不长点记性。于是思科又搞了一下,发布了PVRST+。

      
IEEE又基于思科的MISTP的方案,发布了802.1s(MSTP),这个就比较强了,但凡是大一点的交换网络都用MSTP,也是现在的主流。

 

三。RIP的5种防环机制:

      
Rip作为一个古老的路由协议,虽然正逐渐被淘汰,还是有必要了解一番以理解路由协议的进化史。

      
!!视角:仅限于自身。rip没有邻居表,不知道邻居的信息,也没有下一跳。

rip的局限性造致它有5种防环机制,且5种机制默认同时工作!!!

      
先谈一个易理解的的程序员逻辑,即路由器接从F0接口收到的某个路由条目A不应该从F0反发出去(水平分割),但是距离矢量路由协议的路由更新要向外发送完整的路由表,因此从F0发出之前将A路由的度量值改为15,这样对方收到的A的度量值为16不可达(计数最大跳&毒性逆转)。

      
当路由器R1检测到某网段的网络故障(比如收到icmp报错),它将要做两件事,第一,告诉其他路由器:"你们无法从我这里到达这个子网",第二,寻找其他路径到达这个子网。此时R1将抑制定时器,即在规定时间内不接收邻居发来的关于该子网的路由。试想若没有抑制定时器,这时邻居正好发送该子网的路由,而这条路径恰好经过R1,那么后果将不堪设想。

      
在抑制时间内R1在做什么呢?当然是等待rip网络中所有路由器都收到这条16跳的路由后更正自己的路由表,因此需要触发更新,不必等时间到期再发路由表。此外当某接口的度量值被改动了也会触发更新,防环原理相同。

      
可以看出rip的5个防环机制中,设置最大跳才是终极武器,它配合抑制定时器,不仅能解决"单链路环路",更能防止"跨结点环路"。

 

四。EIGRP与DUAL算法:

视角:周围可视/局部视角。

Eigrp的进步之处在于多了两张表:邻居表与拓扑表。

      
邻居表的建立直接避免了单链路环路:当在收到的路由更新中看到下一跳是自己,那没得说了,这条更新定是来源于我的,拒收。

      
Eigrp的核心算法叫DUAL(弥散更新),其中有一条公式专门用来防止跨结点环路:当邻居通向一个网络的报告距离(RD)比本地路由器通向同一个目的网络的可行距离(FD)短时,即符合了可行性条件(FC),该路径被写进拓扑表。但这样的算法可想而知也是有缺陷的,即很多高开销的可行备份路径也会被当做"环路"而拒绝收录。

!有一个特例:手动汇总导致的环路。

      
其实汇总本身是有"缺陷"的,当路由器把汇总的主类网路由更新传给对端时就相当于让对端生成了一些关于那些"不存在"的子类网路由指向自己。这样就不合理了,如果该路由器有一个默认路由指向对端的话,环路就形成了,一个以不存在的子网ip为目的地址的恶意数据包就会在两个路由器之间无限循环,直到跳数寿命终结。

      
解决方法(默认开启)是利用null0接口。本地生成的汇总路由指向这个逻辑空接口,这里要提一下路由查询的先后顺序:收到数据包先查看普通的单播路由条目,再查看本地汇总路由条目,最后才看默认路由。如图,这样就可以识别出那些数据包是恶意数据包,并且从null0口丢弃。

 

五。Link state路由协议与SPF算法:

!视角:全局(整个区域)视角/上帝视角。

      
除了拥有邻居表,Ospf有一张很强悍的表,叫LSDB(链路状态数据库)(同is-is)。在每个ospf区域中,通过互发lsa(跨网段传输的链路通告),每个路由器都能够获悉所在的整个区域的拓扑和链路状态。这样一来在区域内选路就可以从全局的视角锁定最佳路径,并且百分百无环路,无论是单链路环路还是跨结点环路都可避免,这是链路状态路由协议的创新之处。

  
OSPF区域间路由环路的避免又是通过哪种方式实现的?答案是:分层结构的拓扑实现。Ospf规定所有常规区域都要链接到骨干层,即使物理上与骨干层分隔,也要有条逻辑链路(虚链路)连接到骨干区域。这种树形结构从根本上就摒弃了环路。因此ospf也是天然无环的。

  
与ospf相似的IS-IS,则不要求L1层必须连接到L2层,因而有两个独特的防环机制:第一,非L2区域的通信都要通告L2区域转发;第二,L2区域路由默认不会进入L1(除了路由泄露)。因而实现了防环。附图:SPF树。

 

六。BGP的高层防环机制:

  
谈到Bgp就要有关AS自治系统,bgp的防环主要分为AS内防环与AS间防环(可以类比ospf的区域内和区域间)。

  
AS间:路由更新的as-path字段包含所经过的所有AS号,当bgp路由器看到路由更新中有自己的AS号就会果断放弃这条更新(但在特殊情况下可以用命令取消这个特性)。这就是距离向量与距离矢量之间的区别:距离矢量路由协议(如rip)只记录到达目的地经过多少步,而距离向量路由器则记录了途中经过的路径。看来学好思科还得咬文嚼字啊。

  
Ibgp的水平分割原则是:从IBGP邻居所收到的路由信息,不会传递给其它的IBGP邻居,但可以传递给EBGP邻居。注意这和rip的水平分割不大一样。水平分割是为了防止3个及以上的ibgp
peer围绕成环,造成自治系统内部的跨结点环路。

  
除了网络故障带来的路由环路,网络的不合理规划也会造成环路。比如在BGP中如果让ibgp间的中转路径路由器处于另一个AS内的话就会造成环路。当然这只是其中一个例子,意在说明人为的环路是很难避免的,但思科想的还真周到,提供了next-hop-unchange这条命令来处理上面那个环路。

  
注意,通常使用路由反射器(RR)来解决水平分割带来的路由不学习的问题,但搞笑之处在于,水平分割用来防环,路由反射器用来防水平分割,因而反射器又产生了环。后来RR经过改进,增加了一个特性叫插入簇ID与起源ID。默认情况下RR会在路由更新中加入自己的router-id以及路由更新的起源路由器的router-id,这也是一种路径向量的机制。

附言:

  
有一句古话叫"存在即合理"。路由协议中有一些机制或者说小的细节特性,虽然看似很多余且无用,但却始终存在着。据我多年的学习经验,我想这有两种原因:一,从直觉上感觉它"合情合理",比如bgp宣告路由发更新时打上自己的RID以标注起源信息;二,它的开销很小,比如RR发送更新包中携带一个短消息告诉邻居自己是RR,这与复杂的数据头部和各种周期消息比起来根本微不足道。

时间: 2024-11-09 02:49:30

【★】路由环路大总结!的相关文章

【★】路由环路大总结!

一.前言:        "人类的创造力与破坏力同样强大".互联网行业尤其是网络构建这一领域,从根本上一直存在着一个无奈之处:网络本可以设计的很简单,只要实现网络的连通性即可,甚至全互联,但就是因为要fight against"天灾人祸",尤其是人祸,互联网才衍生出了纷繁复杂的路由协议和各种因特网服务,以及"网络安全"这个庞大的领域.这也是为什么说当今所有的网络通讯流量中,80%的资源都被浪费(用于承载路由消息,协议字段等信息),只有20%被用以

【★】路由环路大总结!

一.前言:        "人类的创造力与破坏力同样强大".互联网行业尤其是网络构建这一领域,从根本上一直存在着一个无奈之处:网络本可以设计的很简单,只要实现网络的连通性即可,甚至全互联,但就是因为要fight against"天灾人祸",尤其是人祸,互联网才衍生出了纷繁复杂的路由协议和各种因特网服务,以及"网络安全"这个庞大的领域.这也是为什么说当今所有的网络通讯流量中,80%的资源都被浪费(用于承载路由消息,协议字段等信息),只有20%被用以

★路由递归查询方法及相关图…

       我们知道,路由查 找的过程是寻找数据包下一跳的过程!IP路由逐跳将数据包送往目的地.所谓的下一跳就是和自己直连的某台路由器的对应接口IP地址,这是合乎情理的理解, 然而IP路由提供了另外一种方式,即下一跳不必非要和自己直连,它可以忽略当前路由器"附近的拓扑",直接告知相对较远方的拓扑,如下图所示: 到达Server的下一跳是R2,到达R2的下一跳是R1...以此类推.协议栈 的路由查找逻辑在查找路由时,如果发现nexthop不是和自己直连的,那么就会将此nexthop作为

★路由递归查询方法及相关图…

       我们知道,路由查 找的过程是寻找数据包下一跳的过程!IP路由逐跳将数据包送往目的地.所谓的下一跳就是和自己直连的某台路由器的对应接口IP地址,这是合乎情理的理解, 然而IP路由提供了另外一种方式,即下一跳不必非要和自己直连,它可以忽略当前路由器"附近的拓扑",直接告知相对较远方的拓扑,如下图所示: 到达Server的下一跳是R2,到达R2的下一跳是R1...以此类推.协议栈 的路由查找逻辑在查找路由时,如果发现nexthop不是和自己直连的,那么就会将此nexthop作为

由路由原理想到的N个细节

路由条目的组成部分:目的地址/掩码 条目来源 cost值 优先级 下一跳 出接口 路由条目的来源:直连路由 静态路由 动态路由 路由的选路原则/原因 1:最长匹配原则 保证投递的准确性 2:递归查询     保证从直连路由投递出去/强制一跳一跳的投递 3:默认路由     走投无路了走默认,保证尽量投递出去而不丢弃 路由的cost值细节:只是衡量能力,不同来源的路由条目不具备可比性 静态路由  0(固定值,不可更改) RIP       跳数(最大16,一旦为16了就不可达,进入抑制状态) OS

《IP路由协议疑难解析》一1.3 动态路由

1.3 动态路由 IP路由协议疑难解析 上一节简要概述了什么是IP路由选择,指出了在大型网络中启用动态路由协议的必要性.本节将讨论IP路由协议分类及特征.虽然所有路由协议都以收集路由信息,支撑路由器转发数据包为己任,但可根据路由协议所转发的流量类型,将其分为两大类:单播路由协议和多播路由协议. 前文已指出,IP的作用是提供编址方案,以标识网络中的各个子网或不同场所.IP包头中的目的地址即为数据包的"归宿".IP包发送方的IP地址存储在包头的源IP地址字段内.IP子网(或简称为子网)是一

《Internet 路由结构(第2版•修订版)》一3.2 IP地址空间耗尽问题

3.2 IP地址空间耗尽问题 Internet 路由结构(第2版•修订版) 人们对IP地址需求的持续增长,给有类编址模型带来了沉重压力.大多数公司之所以申请B类地址,是由于其在网络数和主机数之间较为均衡,能够最大限度地满足需求.A类地址则太过"慷慨",一个网络便可容纳1 600万台主机:而C类地址又太过"吝啬",每个网络所能容纳的主机数太少.时至1991年,事态已然明朗,B类地址消耗并无减缓迹象,必须采取措施来阻止其消耗. 这些措施包括采用创造性的IP地址分配技术,

《Internet 路由结构(第2版•修订版)》一7.3 负载均衡

7.3 负载均衡 Internet 路由结构(第2版•修订版)负载均衡是指让多条链路共同承担数据流量的能力.一个关于负载均衡的常见误解是,将其等同于负载的平均分配.即便承载流量的网络是由单个实体管理,平均分配负载也难得一见.在绝大多数场景中,流量在沿途还要多次转手,流量的平均分配就愈发难上加难了.负载均衡意在高效利用为实现冗余所布设的多条链路,达成流量分布模式.要想达成这一模式,就必须弄清所需负载均衡的流量,对流入和流出的流量都需加以关注. 切勿孤立地看待流量.应该把流量一分为二来看待--入站流

BGP路由反射器概述

为了在AS内部防止环路,"IBGP对等体不允许对外宣告学习自其它IBGP对等体的路由",所以要求IBGP邻居全互联.这就意味着在AS内需要建立n(n-1)条IBGP连接.路由反射器为全互联通过了一种可选的替代方案. 反射规则: 为了防止可能出现的路由环路和路由差错,要求路由反射器不得更改其从客户接收到的路由的属性,并且使用ORIGINATOR_ID和CLUSTER_LIST属性防止环路的出现.(RFC2796定义了Originator_ID属性和Cluster_List属性) Orig