《Python数据科学指南》——1.21 对列进行预处理

1.21 对列进行预处理

我们获取的数据经常并不是我们能直接使用的格式。我们需要执行一系列在机器学习术语中称为数据预处理的数据处理过程。克服这个障碍的一条途径是采用字符串的形式获取所有数据,在后续的场景里再执行需要的数据格式转换。还有一种办法是在数据源阶段就完成这些转换工作。genfromtxt提供了一些函数,让我们可以在读取数据源的时候执行数据转换。

1.21.1 准备工作

假定我们有如下的文本行。

30kg,inr2000,31.11,56.33,1
52kg,inr8000.35,12,16.7,2

这是一个我们获取到的生活中的常见数据样例,开头的两个列里,分别有字符串“kg”和“inr”在真正的数据的后面和前面。

我们来试试如下方法将数据放入NumPy数组中。

in_data = StringIO("30kg,inr2000,31.11,56.33,1\
n52kg,inr8000.35,12,16.7,2")
data = np.genfromtxt(in_data,delimiter=",")

输入结果如下。

>>> data
array([[ nan, nan, 31.11, 56.33, 1. ],
        [ nan, nan, 12. , 16.7 , 2. ]])

如你所见,开始的两个列的数据并没有被读取。

1.21.2 操作方法

我们首先导入必需的库,然后定义一个输入样板,最后演示一下数据预处理。

import numpy as np
from StringIO import StringIO

# 定义一个数据集
in_data = StringIO("30kg,inr2000,31.11,56.33,1\
n52kg,inr8000.35,12,16.7,2")

# 1.使用lambda函数定义两个数据预处理函数
strip_func_1 = lambda x : float(x.rstrip("kg"))
strip_func_2 = lambda x : float(x.lstrip("inr"))

# 2.创建一个函数的字典
convert_funcs = {0:strip_func_1,1:strip_func_2}

# 3.将这个函数的字典传递给genfromtxt
data = np.genfromtxt(in_data,delimiter=",", converters=convert_funcs)

# 4.使用lambda函数来处理转换过程
in_data = StringIO("10,20,30\n56,,90\n33,46,89")
mss_func = lambda x : float(x.strip() or -999)
data = np.genfromtxt(in_data,delimiter=",", converters={1:mss_func})

1.21.3 工作原理

第1步中,我们定义了两个lambda函数,一个将列1中的字符串“kg”从右面清除,另一个将列2中的字符串“inr”从左面清除。

第2步中,我们继续定义一个字典,它的键就是将被函数应用的列名,值就是函数。这个字典被作为参数converters传递给genfromtxt。

现在印输出结果如下。

>>> data
array([[ 3.00000000e+01, 2.00000000e+03, 3.11100000e+01,
           5.63300000e+01, 1.00000000e+00],
        [ 5.20000000e+01, 8.00035000e+03, 1.20000000e+01,
           1.67000000e+01, 2.00000000e+00]])

请注意Nan值不见了,我们获取到了输入数据里的真实值。

1.21.4 更多内容

converters还能用lambda函数来处理输入中丢失的记录。

in_data = StringIO("10,20,30\n56,,90\n33,46,89")
mss_func = lambda x : float(x.strip() or -999)
data = np.genfromtxt(in_data,delimiter=",", converters={1:mss_func})

lambda函数返回−999来替代丢失的数据。在我们的输入里,第2列第2行是一个空值,因而会被替换为−999,最终的输出如下所示。

>>> data
array([[ 10., 20., 30.],
        [ 56., -999., 90.],
        [ 33., 46., 89.]])

访问以下SciPy文档的链接,你能了解到更多的细节:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.htmlhttp://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html。

时间: 2024-11-30 23:54:29

《Python数据科学指南》——1.21 对列进行预处理的相关文章

《Python数据科学指南》——导读

前 言 如今,我们生活在一个万物互联的世界,每天都在产生海量数据,不可能依靠人力去分析产生的所有数据并做出决策.人类的决策越来越多地被计算机辅助决策所取代,这也得益于数据科学的发展.数据科学已经深入到我们互联世界中的每个角落,市场对那些十分了解数据科学算法并且有能力用这些算法进行编程的人才需求是不断增长的.数据科学是多领域交叉的,简单列举几个:数据挖掘.机器学习.统计学等.这对那些渴望成为数据科学家以及已经从事这一领域的人们在各方面都倍感压力.把算法当成黑盒子应用到决策系统里,可能会适得其反.面

《Python数据科学指南》——1.3 使用字典的字典

1.3 使用字典的字典 我们之前提到,为了完成目标,你得创造性地应用各类数据结构,这样才能发挥它们的威力.接下来,我们通过一个实例来帮助理解"字典的字典". 1.3.1 准备工作 请看表1-1. 第1列中列出了3个用户,其他列都是电影,单元格里是每个用户给电影的评分.我们要把这些数据放到内存中,这样大型程序的其他部分也能方便地访问,此时我们将使用"字典的字典". 1.3.2 操作方法 我们通过匿名函数来创建一个user_movie_rating的字典对象,以此展示&

《Python数据科学指南》——第1章 Python在数据科学中的应用 1.1 简介

第1章 Python在数据科学中的应用 在这一章里,我们将探讨以下主题. 使用字典对象 使用字典的字典 使用元组 使用集合 写一个列表 从另一个列表创建列表--列表推导 使用迭代器 生成一个迭代器和生成器 使用可迭代对象 将函数作为变量传递 在函数中嵌入函数 将函数作为参数传递 返回一个函数 使用装饰器改变函数行为 使用lambda创造匿名函数 使用映射函数 使用过滤器 使用zip和izip函数 从表格数据使用数组 对列进行预处理 列表排序 采用键排序 使用itertools 1.1 简介 Py

《Python数据科学指南》——1.20 从表格数据使用数组

1.20 从表格数据使用数组 数据科学的应用程序要成功解决一个问题,必须先找到适当的处理数据的方法.例如在机器学习中对数据进行预测或分类,要么采用有监督的方法,要么采用无监督的方法.而在此之前,传输数据,把数据清洗到匹配算法,可能已经花费了很长的时间. 通常,有很多种方法对数据进行整理使之适合数据科学程序进行处理,数据科学程序开发者首先面对的挑战是如何访问数据,并用Python的数据结构让这些数据持续可用.掌握使用Python访问数据的诀窍是非常有用的,能让你避过纷扰,直接面对问题的核心内容.

《Python数据科学指南》——1.2 使用字典对象

1.2 使用字典对象 在Python语言中,容器是一种对象,它能够容纳任意数量.任意类型的对象.它可以对子对象进行操作,还可以迭代操作.字典.元组.列表还有集合都是容器对象.在collections模块中,Python提供了更多的容器类型.在这一节中,我们先来仔细了解字典. 1.2.1 准备工作 我们先通过一个Python的脚本示例来理解字典是如何操作的,这段脚本用来统计词频,也就是每个词在给定的文本中出现的次数. 1.2.2 操作方法 下面的示例演示了在Python中对字典对象如何操作.通过对

《Python数据科学指南》——1.4 使用元组

1.4 使用元组 在Python中,元组是一种顺序型的容器对象.元组是不可变的,元组中的元素由逗号分隔开,可以对不同类别构成的对象进行排序,不允许插入操作,支持以下操作. in和not in. 比较.串联.切片和索引.min ()和max (). 1.4.1 准备工作 我们讲解字典的时候,描述了完整的功能,对于元组,我们通过一些小段的代码来聚焦于元组的创建与维护操作. 1.4.2 操作方法 先让我们看看一些元组创建和维护的示例代码. # 1.创建一个元组 a_tuple = (1,2,'a')

《Python数据科学指南》——1.8 使用迭代器

1.8 使用迭代器 毫无疑问,对于数据科学的程序而言,数据是极其重要的输入.数据的大小是可变的,有些能装载到内存中,有些则不能.而记录访问架构也是随一种数据格式到另一种而变化.有趣的是,不同的算法处理数据时,需要的是可变长度的组块.例如,假如你在写一个随机梯度下降的算法,你希望在每个时间片传送5000条记录的数据块,如果你对如何访问数据.理解数据格式.依次传送数据.给调用者需要的数据等流程有着清晰的概念,那你才能成功.这样能让你写出清晰的代码.大多数时候,最有趣的部分是我们如何处理数据,而不是我

《Python数据科学指南》——1.10 使用可迭代对象

1.10 使用可迭代对象 可迭代对象和生成器十分相似,但是有一个重要的区别:我们可以重复地访问一个可迭代对象,即使我们已经访问完了序列中的所有元素,我们还可以从头重新访问它,这和生成器是完全不同的. 如果不保持任何状态,它们就是基于对象的生成器.所有带有iter方法的类,在用来产生数据时,都可以被作为无状态对象生成器来使用. 1.10.1 准备工作 我们通过一个简单的示例来理解可迭代对象.如果理解了之前介绍的生成器和迭代器,你也能很容易地理解这个概念. 1.10.2 操作方法 我们来创建一个简单

《Python数据科学指南》——1.19 使用zip和izip函数

1.19 使用zip和izip函数 zip函数将两个相同长度的集合合并成对,它是Python的内置函数. 1.19.1 准备工作 我们通过一个简单示例来演示zip函数. 1.19.2 操作方法 我们传递两个序列给zip函数,并打印输出. print zip(range(1,5),range(1,5)) 1.19.3 工作原理 本例中zip函数的两个参数是两个列表,这两个列表都是由从1到5的数值组成.range函数有3个参数:起始数值.结束数值和步长,默认步长为1.本例中,我们分别把1和5作为列表